صورتی که حلقه داخلی جریان کنترل می‌نماید. خروجی این سطح توان تنظیم شده ی  و  می‌باشد. تحت این کنترل، زمانی که ولتاژ آرایه خورشیدی  دقیقا برابر با ولتاژ رفرنس  باشد، توان تزریقی به شبکه  نیز برابر با مقدار تعیین شده آن می‌باشد. یعنی با تعیین ولتاژ رفرنس  و اعمال آن به این سطح کنترلی توان خروجی اینورتر متناسب با مقدار خواسته شده خواهد بود.

با فرض اینکه مدل دقیق منحنی  آرایه ی خورشیدی نامعلوم است، وظیفه اصلی سطح 2 کنترلی یافتن  متناسب با  در شرایطی است که  کوچکتر از ماکزیموم توان موجود و قابل دسترسی توسط MPPT،  باشد (حالت کنترل دروپ) و همچنین یافتن  به گونه ای متناسب با  در شرایطی است که  بزرگتر از ماکزیموم توان موجود و قابل دسترسی توسط MPPT،  باشد (حالت MPPT). ورودی سطح 2 کنترلی، ،  و  می‌باشد.

کنترل فرکانس در سطح 3 کنترلی قسمت اعظم طرح کنترلی به کار رفته را مشخّص می‌کند. سیستم خورشیدی حاضر در حالت کنترل دروپ مورد بهره برداری قرار می‌گیرد و در صورت نیاز می‌تواند به حالت کنترل اضطراری وارد شود.

لازم به ذکر است، در اینجا به طور خاص با توجّه به زاویه دید این تحقیق تنها حالت کنترلی دروپ مورد توجّه قرار دارد. ورودی سطح 3 کنترلی، تغییرات فرکانس سیستم  و خروجی آن  برای سطح 2 کنترلی خواهد بود.

طرح کنترلی بیان شده می‌تواند بر روی انواع سیستم‌های خورشیدی با توپولوژی‌های مختلف اینورتر در سطح 1 کنترلی مورد استفاده قرار گیرد. تاثیر استفاده از طرح کنترلی پیشنهادی به شدّت وابسته به شرایط بهره برداری سیستم‌های خورشیدی نظیر تابش خورشید و دما است [29]. 

3-3-6- الگوریتم سطح 2 کنترلی برای کنترل توان اکتیو

برای رسیدن به مشخّصات مطلوب تنظیم فرکانس، کنترل سطح 2 می‌بایست دو خصیصه مهّم را برآورده سازد:

  1. توان اکتیو تزریق شده به شبکه وسیله سیستم خورشیدی رفرنس توان تولیدی تعیین شده را به سرعت دنبال کند.
  2. بتوان توان اکتیو را در رنج نسبتاً وسیعی تغییر داد (برای مثال از 0 تا بیشینه توان قابل تولید(MPPT) ).

در الگوریتم‌های پیشین که از حبس تولید (Curtailment) استفاده کردند، سیستم‌های خورشیدی تنها در بخش چپ منحنی  مورد استفاده قرار می‌گرفتند [60] و [61]. در نتیجه پاسخ نه چندان سریع به رفرنس توان بدنبال داشتند. با انتخاب نقاط کاری سمت راست نقطه ماکزیموم توان در منحنی  جهت انتخاب نقطه کار، سرعت دنبال کردن رفرنس توان نسبتا افزایش می‌یابد. در [29] الگوریتمی مبتنی بر درونیابی درجه دوم نیوتون برای رسیدن به نقطه کار جدیدی که به عنوان رفرنس توان مد نظر قرار دارد به کار گرفته شد. اساس کار این الگوریتم استفاده از فرآیندی تکراری برای تعیین ولتاژ لازم برای آرایه خورشیدی است، به نحوی که در این ولتاژ آرایه خورشیدی رفرنس توان را تولید کند. برای مثال این الگوریتم می‌تواند با چند تکرار ولتاژ  متناظر با  در زمانی که  می‌باشد و یا تعیین  هنگامی که  باشد را در زمان کوتاهی تعیین کند.

سطح 3 کنترلی دینامیک سریعی دارد و در قیاس با دینامیک باقی اجزا در مطالعات کنترل خودکار تولید (دینامیک میان مدت)، قابل صرفنظر کردن است.

3-3-7- حالت کنترلی دروپ برای سیستم‌های خورشیدی

کنترل دروپ فرکانس، تکنیکی شناخته شده برای تنظیم فرکانس سیستم قدرت به حساب می‌آید. توان خروجی اکتیو یک ژنراتور سنکرون  متناسب با تغییرات فرکانس سیستم قابل تنظیم است. خصوصاً اینکه تنظیمات به گونه ای انجام می‌شود که توان اکتیو نامی در فرکانس نامی تولید گردد. اگر فرکانس سیستم کمتر از مقدار نامی گردد، نشان می‌دهد  بیشتر از مقدار نامی است و بالعکس.

در این بخش، اِعمال ساختار کنترل دروپ فرکانس بر سیستم‌های خورشیدی شرح و بسط داده می‌شود. اما در اینجا دو محدودیت عمده در قیاس با کنترل دروپ ژنراتورهای سنکرون وجود دارد:

  1. عدم کنترل بر منابع توان اولیّه، محدودیتی سنگین بر حد بالای تولید در توان تزریقی به شبکه اِعمال می‌کند.
  2. ماکزیموم توان قابل بهره برداری از تولید خورشیدی، همانطور که در مدلسازی تولید خورشیدی عنوان شد، به شدّت تحت تاثیر شدّت تابش خورشید و دما است. در نتیجه در بکار بستن کنترل دروپ باید توجه داشت که می‌بایست منحنی دروپ فرکانس را با نقاط کاری متنوعی تطبیق داد.

بر اساس ویژگی‌های بیان شده، می‌توان تابعی توصیف نمود که خروجی رفرنس توان اکتیو را با فرکانس سیستم ارتباط می‌دهد:

(3-23)

که در آن  و  شرایط نامی بهره برداری شبکه است. رابطه 3-23 بیان می‌دارد بدون احتساب محدودیت حداکثر تولید،  می‌تواند به صورت  محاسبه گردد. این فرم مشابه محاسباتی است که برای ژنراتورهای سنکرون نیز انجام می‌شود [2]. زمانی که  به سقف مجاز تولید می‌رسد، مقدار  به آن اختصاص می‌یابد و قابلیّت تنظیم فرکانس را نیز از دست می‌دهد. در منحنی دروپ فرکانس نشان داده شده در شکل 3-16، خطوط عمودی و افقی به ترتیب، مشخّصه دروپ را در حضور و عدم حضور سقف مجاز تولید  نشان می‌دهد.

فرکانس بحرانی فرکانسی است که در آن  با  برابر خواهد شد:

(3-24)

به طور خاص، سیستم خورشیدی توان ماکزیموم  را زمانی تولید می‌کند که فرکانس شبکه  کمتر از فرکانس بحرانی  بوده و زمانی که فرکانس سیستم  بالاتر از فرکانس بحرانی  باشد، میزان مشخّصی از تولید را حبس می نماید. به صورت مشخّص می‌توان عنوان کرد که میزان توان باقیمانده برای رسیدن به ماکزیموم توان تولید فرکانس بحرانی  منحنی دروپ را تعیین می‌کند.

به منظور به کار بردن طرح کنترلی دروپ برای تولید خورشیدی شکل 3-15 تهیه شده است.

شکل 3- 15 دیاگرام کنترل دروپ فرکانس

همانطور که در شکل 3-15 مشخص است مشابه ساختار مشخصه دروپ گاورنر ماشین های سنکرون ، ابتدا میزان خطای فرکانس از انتگرال‌گیر ی گذشته و سپس توسط  تقویت می‌شود. خروجی این واحد، میزان تغییر توان خروجی واحد را تعیین می کند [2]. در سیستم دروپی که برای واحد خورشیدی در نظر گرفته می شود، خروجی سیستم گاورنر، رفرنس توان سطح 2 کنترلی است. دینامیک کنترلر توان اکتیو را می‌توان به صورت تابع تبدیل درجه اول خطی با ثابت زمانی  و نرخ محدودیت تولید در نظر گرفت [62]. محدودیت تولید را ظرفیت تولید واحد خورشیدی  تعیین می کند. در این مطالعه  ثانیه و ضریب تقویت سیگنال  برابر با 100، در نظر گرفته شده است [29].

زمانی که  به بار  متصل شده است، واحد خورشیدی تحت حالت کنترل دروپ مورد بهره برداری قرار می‌گیرد. در این حال، مشخصّات کنترل دروپ مستقیماً تحت تاثیر دینامیک واحد خورشیدی قرار می‌گیرد:

  1. در اینجا باید توجّه داشت که ضریب باید مطابق با کد شبکه و قابلیّت کلی در تنظیم فرکانس، مطابقت داشته باشد. در سیستم تحت بررسی حاضر  در نظر گرفته می‌شود (شکل3-16).

شکل 3- 16 کنترل دروپ حالت ماندگار سیستم خورشیدی

  1. معمولا را شرایط کاری شبکه مشخّص می‌کند. زمانی که مقدار بالایی به خود می‌گیرد فرکانس شدیدا افت کند، تولید خورشیدی نمی‌تواند در کنترل فرکانس مشارکت داشته باشد. در صورتیکه با مقدار کمتری از ، قابلیّت تنظیم فرکانس واحد خورشیدی افزایش می‌یابد. در این حالت تأمین پشتیبانی قابلیّت تنظیم فرکانس واحد خورشیدی در شبکه به قیمت قربانی کردن توانی است که با تابش شدید خورشید قابل استحصال می‌باشد. به عبارت دیگر، موازنه ای بین مزایای اقتصادی و ظرفیت پشتیبانیِ فرکانس صورت می پذیرد. در حقیقت، سهم تولید خورشیدی در شبکه، باید با توجّه به الگو‌های بار و اغتشاشات احتمالی و همچنین قابلیّت مورد انتظار پشتیبانی فرکانس تعیین گردد. برای مثال در یک سیستم ایزوله کوچک با ضریب نفوذ بالای تولید خورشید، مجموع ظرفیت تنظیم فرکانس شبکه ضعیف است. در نتیجه برای سیستم خورشیدی الزامی است با نقطه بارگذاری پایین‌تر پشتیبانی فرکانسی بیشتری را تأمین نماید.
  2. زمانی که فرکانس شبکه به پایین تر از فرکانس بحرانی نزول می‌کند،  ممکن است به بالاتر از  ارتقا یافته و مقداری را اختیار نماید که غیر قابل تأمین است. در این حال زمان نسبتا زیادی لازم است تا  به میزان  باز گردد. از این رو، اکتواتور‌های اشباع اختیار کار را به دست می گیرند و طرح‌های Anti-Windup پیاده سازی گردند [63].

لازم به ذکر است طرح‌های Anti-Windup زمانی فعّال می شوند که تولید خورشیدی به اشباع رفته باشد. در شبیه سازی انجام شده نقطه کار به گونه ای انتخاب شده که اشباعی در تولید اتفاق نیفتد.

در نهایت می توان بلوک دیاگرام سیستم کنترلی پیشنهادی برای مشارکت واحد خورشیدی در کنترل فرکانس را مطابق دیاگرام داخل خط چین شکل 3-17 نشان داد:

شکل 3- 17 ساختمان کنترل دروپ پیشنهادی برای سیستم خورشیدی

3-4- استفاده از ذخیره‌ساز‌های انرژی در سیستم قدرت

سیستم‌های ذخیره‌ساز انرژی باتری می‌تواند راه حل‌های گوناگونی را برای ارتقای کیفیت توان سیستم‌های تولید توان متشکّل از منابع تجدیدپذیر معرفی کند [64] [65]. از آنجا که سیستم ذخیره‌ساز باتری قابلیّت جبران سازی توان اکتیو سریعی دارد، می‌تواند در مسأله کنترل بار فرکانس سیستم قدرت موفق ظاهر شود. علاوه بر این ذخیره‌ساز باتری موجب افزایش قابلیّت اطمینان سیستم در پیک بار به حساب می آیند. با داشتن دینامیک مناسب از ذخیره‌سازهای باتری می‌توان در زمینه‌های مختلفی چون سطح بندی بار، رزرو سیستم، پایدارسازهای توان خطوط بلند، تنظیم فرکانس سیستم اصلاح ضریب توان و غیره نام برد. بعضی از نمونه‌های موفّق استفاده از ذخیره‌ساز باتری را واحد ذخیره‌ساز 17 مگاواتی برلین [66] و 10 مگاوات/40مگاوات-ساعتی واحد چینو واقع در جنوب شرقی کالیفرنیا [67] دانست.

3-4-1- مدل ذخیره‌ساز باتری

مدار معادل واحد BES را می‌توان به صورت مبدل متصل به یک باتری معادل همانند شکل 3-18 در نظر گرفت.

شکل 3- 18 بلوک دیاگرام مدل خطی ذخیره‌ساز باتری [30]

در مدار معادل باتری،  زاویه آتش مبدّل،  راکتانس جابجاسازی،  جریان DC باتری،  مقاومت اضافه ولتاژ،  ظرفیت خازن اضافه ولتاژ    ولتاژ مدار باز باتری،  اضافه ولتاژ باتری،  مقاومت اتصالی و  مقاومت داخلی باتری،  مقاومت تخلیه خودی باتری و  ظرفیت خازنی باتری را نشان می‌دهد. ولتاژ DC ماکزیموم بی باری مبدل 12 پالسه همانطور که در رابطه 3-25 آمده، با  نشان داده شده است:

(3-25)

که در آن  ولتاژ rms خط می‌باشد. جریان DC تأمینی باتری بوسیله معادله 3-26 بیان می‌شود:

(3-26)

بر اساس بررسی مدل مداری مبدل، توان اکتیو و راکتیو جذب شده واحد BES بوسیله معادلات3-27  و 3-28 بیان می‌شود:

(3-27)
(3-28)

که در آن  و  زاویه آتش مبدل شماره 1 و شماره 2 به کار رفته در مدل BES می‌باشد.

در مطالعات کنترل بار فرکانس عملکرد واحد BES را می‌توان به صورت یک تابع تبدیل درجه اول به فرم زیر و به همراه یک محدود کننده جهت محدود سازی توان تزریقی(مشخص کننده توان نصب شده ذخیره‌ساز در ناحیه) ، تقریب زد [64]:

(3-29)

که در آن  تغییرات فرکانس،  خروجی توان واحد BES،  بهره واحد تولیدی و  ثابت زمانی واحد BES می‌باشد،  و .

3-5- الگوریتم بهینه‌سازی نوسان ذرات

کنترل خودکار تولید با بازگرداندن فرکانس شبکه و توان انتقالی خطوط به مقدار نامی و برنامه ریزی شده در پی بروز اغتشاشی در بار، نقشی مهّم در سیستم‌های قدرت بر عهده دارند.

پس از بروز انحرافی در بار، برای از بین بردن انحراف ماندگار فرکانس شبکه و باز گرداندن آن به مقدار نامی، حلقه کنترل فرکانس ثانویه می‌بایست با بهره‌هایی بهینه، پاسخگوی این نیاز باشند. در این مرحله، بهره‌های کنترلر انتگرال‌گیر حلقه ثانویه توسط تکنیک بهینه‌سازی نوسان ذرات بهینه شده اند.

این الگوریتم در ابتدا توسط کندی [68]معرفی شد. با بهره گرفتن از این تکنیک پاسخ‌های با کیفیتی با خصوصیات همگرایی پایدار در زمانی کمتر فراهم می‌شود. این تکنیک از ذراتی استفاده می‌کند که نماینده پاسخ‌های بالقوه برای مسئله به حساب می آیند. تمام ذرات با سرعت معینی در فضای جستجو به حرکت در می آیند. موقعیت ذره  ام  نام دارد و سرعت این ذره در تکرار  به صورت زیر تعریف می شوند:

(3-30)
(3-31)

که در آن  تکرار،  تعداد ذرات،  وزن لختی است که به صورت خطی با روند تکرار الگوریتم کاهش می‌یابد،  و  ثابت‌های مکان،  و  شماره‌هایی تصادفی که به صورت یکنواخت از 0 تا 1 انتخاب می‌شوند،  تکرار الگوریتم،  بهترین موقعیت قبلی ذره  ام و  موقعیت بهترین ذره است. در هر تکرار پاسخ بهینه در سلول  جایگذاری می گردد. با ادامه روند بهینه‌سازی و در انتهای تکرار‌ها  پاسخ مسئله خواهد بود. شکل 3-19روند اجرای الگوریتم را نشان می‌دهد.

مقدار دهی اولیّه  
تکرار  
  محاسبه مقدار برازندگی ذرات
  مقایسه مقادیر برازندگی با  و
  تغییر سرعت و موقعیت ذرات متناسب با معادلات 3-29 و  3-30
پایان ( مرز همگرایی یا بیشینه تعداد تکرار)  

شکل 3- 19روند اجرایی تکنیک PSO

3-6- شبکه ترکیبی

با توجه به برنامه های کنترلی پیشنهادی جهت مشارکت تولیدات بادی و خورشیدی و همچنین ذخیره سازها در کنترل فرکانس، میتوان مدل کنترل بار فرکانس سیستم دو ناحیه ای قدرت شکل2-8 را در حضور منابع انرژی تجدیدپذیر و ذخیره سازی باتری به صورت شکل 3-20 به روز کرد.

شکل 3- 20 بلوک دیاگرام سیستم دو ناحیه ای قدرت در حضور مزرعه بادی DFIG و مزرعه خورشیدی و ذخیره ساز باتری

در این شکل تولیدات بادی در ناحیه 1 مستقر شده و با بهره گرفتن از سیگنال ورودی تغییرات فرکانس در کنترل فرکانس شرکت داده می شود. تولیدات خورشیدی نیز در ناحیه 2 نصب شده و با تغییرات فرکانس ناحیه 2 در کنترل فرکانس شرکت دارند. علاوه بر این دو ذخیره ساز های نصب شده در دو نو ناحیه نیز متناسب با حجم نصب شده در ناحیه ظرفیت جدیدی برای مشارکت در کنترل اولیّه فرکانس پدید می آورند.

3-7- جمع بندی

در این فصل ابتدا تاثیرات ورود تولید بادی DFIG به شبکه دو ناحیه ای قدرت مدل شد. نشان داده شد که جایگزینی تولید بادی به جای تولید متداول به معنای کاهش لختی و توانایی تنظیم فرکانس شبکه خواهد بود. در ادامه با بهره گرفتن از مدل توربین بادی 3.6 مگاواتی جنرال الکتریک، ایده استفاده از انرژی جنبشی موجود در جرم چرخان توربین بادی مورد توجه قرار گرفت کنترلری جهت استخراج این انرژی و معنا بخشیدن به مفهوم لختی توربین بادی عنوان شد. در کنترلر پیشنهادی با بروز انحرافی در فرکانس، این تابع کنترلی فعال شده و توان اکتیو کوتاه مدتی را برای شبکه از طریق جذب انرژی جنبشی موجود در جرم چرخان توربین تا رسیدن سرعت پره به مرز پایینی سرعت مجاز تأمین می کند. این توان موقت علاوه بر سطح توان تولیدی بادی است. این توان اکتیو موقت با مقدار تغییرات فرکانس و همچنین نرخ تغییرات فرکانس سیستم متناسب است. پس از رسیدن فرکانس به سطحی قابل قبول و یا رسیدن سرعت چرخش روتور توربین بادی به سرعت کمینه، این حلقه کنترلی غیر فعال می شود.

در ادامه سیستم کنترلی جدید برای سیستم خورشیدی در شبکه دو ناحیه ای قدرت مورد استفاده قرار گرفت. طرح کنترلی پیشنهاد شده برای استفاده از تولید خورشیدی در سیستم دو ناحیه ای قدرت در نظر گرفتن سطحی بین 0 تا مقدار بیشینه توان قابل تأمین از طرف تولید خورشیدی به صورتی که ظرفیت مازادی در دسترس بوده باشد. برای این ظرفیت رزرو سیستمی مشابه سیستم دروپ واحد های تولید متداول عنوان شد. متناسب با تغییرات فرکانس و ثابت دروپ سیستم خورشیدی، خروجی واحد خورشیدی تغییر می کند. این تغییر توان متناسب با اعمال ولتاژ مشخصی به اینورتر ها و قسمت الکترونیک قدرت شبکه است. این بخش با یک تابع تبدیل درجه اول با ثابت زمانی نسبتاً کوچکی مدل شد. کنترلر پیشنهادی متناسب با تغییرات فرکانس و ضریب نفوذ تولید بادی در کنترل فرکانس اولیّه شرکت می کند.

در ادامه ساختار داخلی ذخیره ساز باتری به اختصار بیان شد. مدلی جهت شرکت ذخیره ساز باتری در کنترل فرکانس عنوان شد. جهت بهینه سازی پارامتر های سیستم قدرت از الگوریتم هوشمند بهینه سازی ازدحام ذرات استفاده می‌شود. قواعد حاکم بر این تکنیک بیان شد. در انتها با توجه به نکات مطروحه در باب مشارکت تولیدات بادی و خورشیدی در کنترل اولیّه فرکانس و حضور ذخیره‌سازها، مدل سیستم قدرت به روز شد. در فصل آینده با توجه به مدل کنترلی بیان شده نتایج شبیه سازی بیان می گردد.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

فصل چهارم: شبیه سازی و ارائه نتایج

 

 

 

 

 

 

 

 

 

 

 

4-1- مقدمه

در این فصل با توجّه به حضور تولیدات انرژی تجدیدپذیر در شبکه،  پاسخ دینامیکی شبکه در حضور ضریب مشخّصی از تولید بادی و یا تولید خورشیدی و یا هر دو همزمان، بدون بکار بردن برنامه‌های کنترلی جهت کنترل فرکانس و با بکار بردن آنها مورد مقایسه قرار می‌گیرند. اثر استفاده از ذخیره‌ساز‌ها در حضور همزمان تولید بادی DFIG با پشتیبانی موقّت  توان اکتیو و تولید خورشیدی با اعمال کنترلر دروپ فرکانس طی چند سناریو بررسی شده و ضریب نفوذ بهینه‌ای برای استفاده از منابع انرژی تجدیدپذیر تعیین می‌شود. برای داشتن پاسخ فرکانسی مطلوب و از بین بردن خطای حالت ماندگار بهره‌های کنترلر انتگرال‌گیر حلقه کنترلی ثانویه توسط الگوریتم بهینه‌سازی نوسان ذرات، بهینه شده و نتایج

ی

  • مشخّصات دینامیکی ماشین‌ها و کنترلر‌ها.
  • انحراف ماندگار فرکانس در حالت دائمی، تابع دامنه اغتشاشات وارده و مشخّصه پاسخ فرکانسی شبکه می‌باشد. مشخّصه فرکانسی سیستم تابع مسائل زیر است:

    • مشخّصه دروپ تمام ژنراتورهای ناحیه که در تأمین بار مشارکت دارند.
    • حسّاسیت بار به تغییرات فرکانس سیستم در ناحیه مورد نظر.

    به طور کلی عدم تعادل بین تولید و مصرف همواره در سیستم قدرت به صورت لحظه ای و دائم وجود دارد. کمتر بودن فرکانس از مقدار نامی نشان دهنده کسری تولید در شبکه است و بالعکس. در عمل حتی بدون وجود خطا در سیستم، بار به صورت پیوسته تغییر می‌‎کند. انحراف فرکانس از مقدار نامی کنترل اولیّه را فعّال می‌کند. کنترل اولیّه باعث ایجاد یک فرکانس جدید و متفاوت از فرکانس نامی (همراه با خطای حالت ماندگار) در ناحیه می‌شود. از آنجائیکه در یک سیستم قدرت، هر ناحیه کنترلی بر اساس توازن بار در ناحیه خود در کنترل بار فرکانس شرکت می‌‎کند، عدم تعادل بین بار و تولید در هر ناحیه باعث تبادل توان بین نواحی کنترلی شده و انحراف از مقدار برنامه ریزی شده را در پی دارد.

    شکل 2- 8 مدل خطی سیستم دو ناحیه ای قدرت با حلقه کنترلی تکمیلی [2]

    وظیفه کنترل ثانویه که همان کنترل خودکار تولید نامیده می شود، حفظ توازن توان در تمام ناحیه‌های کنترلی به صورتی است که مقدار فرکانس برابر مقدار نامی و همچنین میزان توان انتقالی خطوط برابر با میزان توان انتقالی برنامه ریزی شده آن باشد.

    علاوه بر این دو حلقه کنترلی، کنترل ثالثیه ای نیز وجود دارد که عملکرد آن کند تر از کنترل‌های اولیّه و ثانویه است. ساختار کنترل ثالثیه به نحوه ی مدیریت شبکه و قوانین آن وابستگی دارد. به عنوان مثال، در ساختار سنتی، بهره بردار سیستم پس از انجام پخش بار اقتصادی، مقادیر جدید نقطه کار واحد‌های تولیدی را تعیین می کرد. در واقع، کنترل ثالثیه میزان توان تولیدی واحدها و نقاط بار گذاری آنها را به گونه ای تعیین می‌‎کند که با برقراری توازن میان توان تولیدی اکتیو و راکتیو واحدها با میزان مصرف آنها  (به علاوه تلفات شبکه) و ضمن رعایت قیود شبکه، هزینه بهره برداری نیز کمینه شود.

    ورود منابع انرژی تجدیدپذیر در مقیاس بالا اثرات پر رنگی بر قابلیّت کنترل فرکانس سیستم قدرت و سیستم‌های کنترل خودکار همانند دیگر سیستم‌های کنترلی و بهره برداری خواهد داشت. این اثرات در سال‌های آتی که ضریب نفوذ تولیدات تجدیدپذیر روند صعودی به خود می‌گیرد نیز افزایش می‌یابد. از سوی دیگر، اکثر منابع انرژی تجدیدپذیر که مورد بهره برداری قرار گرفتند فاقد قابلیّت‌های تنظیم فرکانس می‌باشند. شاید این خصیصه کمک مشخّصی به قابلیّت تنظیم فرکانس شبکه به حساب نیاید، بلکه نیاز به داشتن توان کافی هنگام بروز اغتشاشی در شبکه و برقراری تعادل تولید-مصرف را دوچندان می‌‎کند. ساختار کنترل فرکانس در آینده، می‌بایست از انعطاف عمل و هوشمندی بیشتری برخوردار بوده تا بتواند این اطمینان خاطر را فراهم آورد که به صورت پیوسته توازن لازم میان تولید و مصرف را در شبکه در پی بروز تغییر در بار شبکه و همچنین نوسانات توان تولیدی منابع تجدیدپذیر برقرار نماید.

    برای رسیدن به این مطلوب، بهره‌برداران شبکه می بایست اطلاعات و الگوهای دقیق تولید تجدیدپذیر و بار را در دست داشته باشند. امروزه توازن تولید-مصرف در یک سیستم قدرت بوسیله کنترل خروجی منابع تولید متداول (و نه تولید تجدیدپذیر) جهت دنبال کردن الگوی بار مد نظر قرار دارد. با ورود منابع انرژی تجدیدپذیر به نظر می‌رسد از سهم ظرفیت در دسترس کنترل خودکار تولید در برقراری تعادل تولید و مصرف (کنترل بار فرکانس) کاسته شود. در نتیجه می‌توان توقع داشت که در آینده ای نزدیک، کنترل خودکار تولید سهم مهّمی در برقراری مجدّد توازن تولید-مصرف در چهار چوب زمانی کوتاه مدت (چند ثانیه تا چندین دقیقه) و اداره کردن خطای پیشبینی بار و تولید متداول، بازی کند. از این رو، بسیار ضروری است بهره‌برداران و طراحان شبکه بروی استراتژی‌های کنترلی بازنگری‌های لازم را به عمل آورند و به صورت نسبی مرز‌های عملکرد، قابلیّت‌ها و تکنولوژی‌های لازم را برای ارتقای کیفیت توان تحویلی، به روز نمایند.

    2-2- پیشینه تحقیق

    2-2-1- وضعیت فعلی استفاده از منابع انرژی تجدیدپذیر

    امروزه لزوم استفاده ازمنابع انرژی تجدیدپذیر در بسیاری از کشورهای دنیا به اثبات رسیده است. رشد استفاده از منابع انرژی تجدیدپذیر در پاسخ به پدیده گرمایش جهانی و نیاز به داشتن منبع سوخت امن و ارزان، دلیلی بر این مدعاست. منابع انرژی تجدیدپذیر در حال حاضر بیش از 14% نیاز به انرژی کل دنیا را فراهم می‌آورد  [3].

    در حال حاضر، تکنولوژی استحصال انرژی بادی بیشترین سهم از بکارگیری منابع انرژی تجدیدپذیر در سیستم قدرت را به خود اختصاص داده است. پیش بینی می‌شود تا سال 2015 تولید جهانی آن به بیش از 300 گیگاوات رسد. اینگونه پیش بینی شده ‌است که ضریب نفوذ تولید بادی در کل دنیا، تا سال 2020 به  8% کل مقدار توان تولیدی برسد. اتحادیه اروپا نیز رهیافت به ضریب نفوذ 20% را در پایان سال 2020 میلادی در افق چشم انداز خود قرار داده است [4]. به گفته سازمان انرژی بادی اروپا، ظرفیت تولیدی توان بادی به مقدار 180 گیگاوات ارتقا یابد [5]. دپارتمان انرژی ایالات متحده نیز رسیدن به ضریب نفوذ 6% استحصال انرژی بادی در پایان سال 2020 اعلام داشته است [6].

    در میان تمامی مصادیق تولید پراکنده، تولید خورشیدی نیز به سبب داشتن خصوصیات دوستدار محیط زیست (سبز)، کاهش افزایشی قیمت ماژول خورشیدی و همچنین مشوّق‌های مالی دولت‌ها به سرعت در حال پیشرفت می‌باشند [7] [8]. فعّالیت‌های متنوعی در جهت استفاده از انرژی خورشیدی، باتری‌ها و واحدهای ذخیره‌ساز انرژی انجام یافته است. گزارش‌های منتشره در سال 2011 حاکی از این مطلب است حجم عظیمی از سیستم‌های متصل به شبکه در کشور‌های توسعه یافته نظیر ایالات متحده، آلمان و ژاپن مورد بهره برداری قرار گرفته اند و همچنین برنامه‌های احداث چندین واحد دیگر در سرتاسر جهان در دستور کار قرار دارند [9] [10]. هدف گذاری ژاپن در پایان سال 2010 نصب ظرفیت 28 گیگاوات پانل‌های خورشیدی بوده است [11]. سامسونگ به تازگی اعلام داشته با امضای قراردادی قصد ساختن واحد خورشیدی 100 مگاواتی را دارد که اولین فاز از یک مجموعه 500 مگاواتی به حساب می‌آید [12]. رشد بازار برق منابع انرژی تجدیدپذیر در کشورهای آسیایی نیز چشمگیر بوده است. بر اساس نرخ رشد فعلی، اتحادیه صنعتی منابع انرژی تجدیدپذیر چین، ظرفیتی نزدیک به 50 گیگاوات را تا سال 2015 پیش بینی کرده‌است [13]. به نظر می‌رسد هند نیز نرخ رشد نصب منابع استحصال توان بادی خود را حفظ نموده است. در کره، منابع انرژی تجدیدپذیر نیز رو به رشد است. دولت جایگزینی 5 % تولید متداول با منابع انرژی تجدیدپذیر را تا سال 2011 در دستور کار قرار داده بود [4].

    پس از چند سال کاهش نرخ رشد، بازار برق انرژی تجدیدپذیر اقیانوسیه نیز جانی تازه یافته است. در استرالیا، دولت رسیدن به سقف 20% استفاده از این منابع را تا پایان 2020 مبنا قرار داده است. همچنین اروپا، آمریکای شمالی، آسیا بالاترین نرخ افزایش به میزان ظرفیت منابع تجدیدپذیر را دارا هستند. خاور میانه، آفریقای شمالی و آمریکای لاتین نیز ظرفیت منابع تجدیدپذیر نصب شده خود را افزایش داده اند. ظرفیتهای جدیدی در ایران، مصر، مراکش، تونس و برزیل گزارش شده‌اند [13].

    2-2-2- نقش تولید خورشیدی در کنترل فرکانس شبکه

    از آنجا که هزینه ی نصب و راه اندازی اولیّه مزارع خورشیدی نسبتاً بالا بوده و منبع انرژی رایگان در اختیار دارند، مزارع خورشیدی جهت دریافت حداکثر بازگشت مالی عموماً به گونه ای مورد بهره برداری قرار می گیرند که بیشینه مقدار توان[1] استحصال گردد [14]. با افزایش ضریب نفوذ مزارع خورشیدی، علاوه بر ظرفیت تنظیم فرکانس (که عموماً توسط ژنراتورهای سنکرون تأمین می‌شود) لختی شبکه کاهش می‌یابد، که خود عاملی در جهت انحراف بیشتر فرکانس در قبال اغتشاش وارده به سیستم به شمار می‌رود [15]. از سوی دیگر با ادامه ی روند کاهش قیمت پنل‌های خورشیدی و بالطبع تسریع روند افزایش ضریب نفوذ سیستم‌های خورشیدی در شبکه قدرت، نیاز به داشتن سرویس‌های‌جانبی مهّم نظیر کنترل فرکانس و ولتاژ بیش از پیش رخ می نماید [16].

    رویکردهای متنوعی در بهره‌برداری از تولید خورشیدی موجود است. سه رویکرد عمده را می‌توان اینگونه نام برد [17]:

    1. یک رویکرد متداول جهت کنترل فرکانس تولید خورشیدی به این صورت است که تولید خورشیدی به صورت MPPT تولید شود و به وسیله سیستم‌های ذخیره‌ساز انرژی (ESS) نوسان‌های توان تولیدی خروجی نیروگاه خورشیدی کاهش یابد [18] [19] [20] [21]
    2. نصب و راه اندازی بانک بار مجازی (بار اضافی) جهت جذب توان مازاد[20].
    3. بهره‌برداری از نیروگاه خورشیدی در حالت توزیع توان بوسیله استراتژی‌های حبس تولید تعمّدی (deliberate curtailment) .
    4. استفاده از ذخیره‌سازهای حجیم نظیر تلمبه ای-ذخیره ای، ذخیره‌سازهای باتری یا هوای فشرده، جهت ذخیره انرژی خورشیدی در طول روز و مصرف آن در شب.

    چندین تحقیق جهت کمینه کردن اثرات نامطلوب اتصال ژنراتور خورشیدی به شبکه ایزوله، که به صورت MPPT مورد بهره برداری قرار گرفته، ارائه شده ‌است [22] [23] [24] [25] [26] [27]. درین مقالات متداول ترین روش اعمالی جهت کنترل فرکانس، استفاده از ذخیره‌سازهای انرژی برای نرم کردن توان خروجی، تنظیم فرکانس و در نظر گرفتن ظرفیتی رزرو برای ژنراتور خورشیدی بوده است. هیچکدام از روش‌های ذکر شده توان کنترل خروجی ژنراتور خورشیدی هنگام تغییرات بار را ندارند و هیچ گونه استراتژی کنترلی جهت شرکت دادن واحد تولید خورشیدی در تنظیم فرکانس سیستم ارائه نمی‌کنند. در [28] شبکه ای ترکیبی از تولید خورشیدی و باد در نظر گرفته شده ‌است. در این مقاله روشی برای کنترل هر چه بهتر باتری جهت نرم کردن اغتشاشات توان خروجی تولید بادی و خورشیدی پیشنهاد شده ‌است. در مرجع [21] با بهره گرفتن از منطق فازی و در نظر گرفتن تغییرات فرکانس، نرخ تغییرات فرکانس و تغییرات تابش خورشیدی الگویی برای تعیین خروجی ژنراتور خورشیدی در جهت کاهش نوسانات فرکانسی پیشنهاد شد. نتایج حاصله با نتایج حاصل از روشMPPT به همراه استفاده از ذخیره‌ساز باتری مقایسه شد. در [20] یک بار مجازی در نظر گرفته شده که در زمان اضافه تولید ژنراتور خورشیدی توان مازاد را مصرف می‌کند و زمانی که کمبود تولید وجود داشته باشد، از مدار خارج می‌شود.

    با توجّه به رویکرد مورد توجّه قرار گرفته در [29] می‌توان دریافت، موازنه ای بین جنبه اقتصادی بهره‌برداری از واحد خورشیدی و همچنین قابلیّت تنظیم فرکانس شبکه می‌تواند صورت پذیرد در جهتی که تولید خورشیدی توانایی شرکت در کنترل اولیّه فرکانس شبکه را داشته باشد. وقتی تولید خورشیدی به صورت MPPT مورد بهره برداری قرار می‌گیرد هیچ گونه ظرفیت آزادی برای شرکت در کنترل فرکانس نخواهد داشت. به این دلیل که ظرفیتی برای افزایش تولید در این صورت متصور نخواهد بود. ولی اگر سطح توان تولیدی خورشیدی در مقدار بهینه ای از تولید تعدیل گردد، ظرفیتی در دست خواهد بود که با بهره گرفتن از آن واحد خورشیدی می‌تواند سهمی در کنترل اولیّه فرکانس را بر عهده گیرد. به عبارت دیگر می‌توان با داشتن سیستم کنترلی مناسب نظیر سیستم دروپ واحد‌های تولید متداول، مشخّصه دروپی برای تولید خورشیدی در نظر گرفت. بدین ترتیب با بهره گرفتن از این استراتژی با در دست داشتن داشتن شدّت تابش خورشیدی و درجه حرارت محیط و تعیین سقف بیشینه تولید خورشیدی در چهارچوب زمانی کوتاه مدت،  محدوده ای مطلوب جهت بهره‌برداری واحد خورشیدی تعیین نمیود بطوریکه با بهره گرفتن از آن تعادل میان تولید-مصرف (به همراه تلفات) را مجدّداً برقرار نمود. گرچه در این استراتژی کنترلی نیازی مبرم به استفاده از منابع ذخیره‌ساز انرژی محسوس نیست، اما می‌توان به کمک منابع-ذخیره‌ساز‌های توان بالا، مدیرت توان ذخیره شده ی رزرو را بهبود بخشید. با بهره گرفتن از ذخیره‌سازهایی با پاسخ سریع نظیر ذخیره‌ساز باتری می‌توان علاوه بر پوشش موارد فوق، می‌توان ظرفیت جدیدی نیز برای کمک به قابلیّت تنظیم فرکانس شبکه متصور بود [30].

    2-2-3- حضور تولید بادی در کنترل فرکانس

    از دیگر سو با افزایش حجم تولید بادی و با افزایش ضریب نفوذ توربین‌های بادی در شبکه قدرت ارائه خدمات جانبی نظیر کنترل فرکانس آنها نیز بیش از پیش حائز اهمیت خواهد شد. معمولا نگاه غالب بر این است که حضور تولید بادی حجیم در شبکه و جایگزینی آن به جای تولید متداول، موجب کاهش ظرفیت و تاثیرگذاری تنظیم فرکانس شبکه خواهد شد. پیشرفت‌های اخیر [31] [32] [33] [34] در جهت افزایش ظرفیت‌های کنترلی توربین‌های بادی سرعت-متغیّر نشان داده است که استفاده هرچه بیشتر از تولید بادی نه تنها به معنای کاهش لختی شبکه و توانایی کنترل فرکانس شبکه نخواهد بود، بلکه تحت شرایطی شرکت داده شدن آنها در کنترل فرکانس شبکه را میسّر نموده و سبب افزایش استحکام[2] چنین سیستمی نیز خواهد شد. تحقیقات اولیّه نشان داده است می‌توان از انرژی جنبشی ذخیره شده در پره و قسمت چرخان توربین بادی در کوتاه-مدّت جهت کنترل اولیّه فرکانس بهره جست [34]. توانایی پشتیبانی کوتاه مدت توان اکتیو تولید بادی برای تقویت عملکرد کنترل اولیّه فرکانس در [35] مورد مطالعه قرار گرفته است. حلقه کنترلی اضافی جهت تطبیق نقطه مرجع گشتاور[3] به عنوان تابعی از تغییرات فرکانس و همچنین نرخ تغییرات فرکانس به منظور تسهیل استفاده از لختی پنهان برای استفاده در شبکه فراهم آورده است. همانطور که در [31] عنوان شده ‌است، می‌توان با کنترل لختیِ مولّد DFIG از طریق کنترل تکمیلی لختی پاسخ مناسبی، بوسیله تخلیه انرژی جنبشی موجود در جرم چرخان توربین‌های بادی به عنوان منبع توان اضافی و موقّت  در کنار تولید بادی دریافت نمود. آزاد شدن انرژی موجود در توربین بادی با این شیوه در قیاس با توربین بادی سرعت-ثابت بیشتر خواهد بود. همانطورکه در [32] آمده است، اثر لختی DFIG کاملاً نامعلوم نیست. این اثر به کنترلر جریان روتور وابسته می‌باشد. کنترلر پیشنهادی در [33] براحتی توانسته است به صورت کاملاً پویا، بردار شار القایی روتور DFIG را جهت جلوگیری از بروز تغییرات ناگهانی ولتاژ خروجی کنترل کند. نتیجه استفاده از چنین کنترلری کاهش افت فرکانس ناشی از بروز این اغتشاشات و تلفات ناشی از آن می‌باشد. این پیشرفت‌ها ایده استفاده کسری از انرژی ذخیره شده در توربین DFIG برای پشتیبانی توان حقیقی کوتاه مدت را میسّر می‌سازد، پشتیبانی که در صورت بروز اغتشاشی نظیر تغییر بار، در جهت کاهش افت فرکانس در شبکه مثمر ثمر خواهد بود [36]. در این مرجع با بهره گرفتن از DFIG و پیشنهاد حلقه کنترلی جدید در کنترل اولیّه فرکانس، تولید بادی پشتیبانی توان حقیقی اضافی و موقّت  مزرعه بادی در کنار تولید متداول من جمله حرارتی و آبی در یک سیستم دو ناحیه ای قدرت مورد توجّه قرار گرفت. در این مرجع با بهره گرفتن از برنامه کنترلی ارائه شده، متناسب با ضریب نفوذ ژنراتور بادی و همچنین درصد مشخّصی از پشتیبانی توان حقیقی توسط DFIG و با توجّه به جنس تولید ناحیه (حرارتی یا آبی و یا هر دو) پاسخ گذرای فرکانسی و توان انتقالی خطوط بهبود یافته اند. تحقیقات دیگری نیز جهت کمینه کردن اثرات سوءِ تولید بادی بر شبکه نیز صورت پذیرفته است [37].

    2-2-4- استفاده از ذخیره‌سازها

    انواع ذخیره‌سازها نظیر ذخیره‌ساز ابررسانای مغناطیسی[4] و همچنین ذخیره‌ساز دو سوی خازنی برای کنترل خروجی تولید بادی پیشنهاد شده‌اند. اثرات سوء تغییرات توان تولیدی نیروگاه بادی بر کنترل فرکانس شبکه در [38] [39]مورد مطالعه قرار گرفته است. در [40] با بهره گرفتن از ذخیره‌سازی انرژی جنبشی (لختی[5] موجود در پره و ماشین) شرکت تولید بادی در کنترل اولیّه فرکانس مورد مطالعه قرار گرفته است. در مرجع [41] روشی برای تعیین سقف مجاز نوسانات تولید بادی در حضور تولید حرارتی عنوان شده ‌است. همچنین با بهره گرفتن از تکنیک‌های مُدال[6] تاثیرات دینامیکی تولید بادی بر کنترل فرکانس اولیّه و ثانویه (تکمیلی) مورد مطالع قرار گرفت است [42] [43] تحقیقات مشابه دیگری نیز جهت مطالعه و بررسی تاثیرات RESs بر بهره‌برداری از شبکه و کنترل ثانویه صورت پذیرفته است [44] [45] [46].

    2-3- جمع بندی

    در این فصل ابتدا به تبیین مبانی کنترل خودکار تولید پرداخته شد. ورود منابع انرژی تجدیدپذیر به شبکه در مقیاس بالا منوط به برقرار ماندن توانایی شبکه جهت کنترل مطلوب فرکانس عنوان شد. در ادامه مطالب، سابقه تحقیق مورد بررسی قرار گرفت. در بخش کنترل فرکانس سیستم های خورشیدی، عمدتاً توانایی لازم برای کنترل فرکانس شبکه از طریق استفاده از ذخیره ساز ها صورت می پذیرد. علاوه بر آن در اکثر مطالعات صورت گرفته، واحد خورشیدی فاقد کنترلی جهت شرکت در  کنترل فرکانس است. در بخش تولیدات بادی مطالعات اخیر نشان می دهد رویکرد غالب  جهت کنترل فرکانس شبکه، استفاده از انرژی ذخیره شده در جرم چرخان (پره) توربین در صورت لزوم برای ایجاد قابلیت کنترل اولیّه فرکانس می باشد. نشان داده شد اگرچه که این توانایی موقتی و متناسب با انرژی جنبشی موجود در جرم چرخان توربین است، این انرژی پنهان قابل آشکارسازی و الحاق به شبکه است.

    در فصل بعدی ایده های جدیدی برای کنترل بهت

    ر فرکانس در حضور همزمان تولید بادی و خورشیدی با ضریب نفوذ بالا در شبکه عنوان می شود.

     

     

     

     

     

     

     

    فصل سوم: کنترل فرکانس تولید بادی و خورشیدی

     

     

     

     

     

     

     

     

     

     

     

    3-1- مقدمه

    در این فصل ساختار‌های واحد تولید انرژی بادی ژنراتورهای دوسو تغذیه (DFIG) و همچنین پانل خورشیدی و همچنین استراتژی‌های کنترلی مورد نیاز آنها جهت مشارکت در کنترل فرکانس بررسی می گردند. همانطور که ذکر شد با افزایش ظرفیت نفوذ تولید بادی، شبکه با کاهش ظرفیت پشتیبانی تنظیم فرکانس مواجه می‌شود. اگرچه طرح‌های کنترلی برای بهبود کنترل فرکانس در ادامه معرفی می‌شود، اما در حضور تولید بادی با ضریب نفوذ بالا، تغییرات غیر قابل پیش بینی تولید بادی و علاوه بر آن با ورود همزمان تولید خورشیدی به شبکه، استفاده از ذخیره‌سازهای توان برای بهبود مرز‌های پایداری سیستم اجتناب ناپذیر می نماید. در ادامه مدلی مناسب جهت استفاده ذخیره‌ساز باتری در کنترل فرکانس بیان می‌شود. جهت بهینه‌سازی پارامترهای مرتبط با کنترل فرکانس شبکه، از الگوریتم بهینه‌سازی نوسان ذرات استفاده می‌شود. در انتهای فصل مختصراً الگوریتم بهینه‌سازی نوسان ذرات شرح داده می‌شود.

    3-2- مشارکت تولید بادی ژنراتور القایی دو سو تغذیه در تنظیم فرکانس شبکه

    در کنار افزایش ضریب نفوذ بادی در سیستم قدرت، نقش آنها در سرویس‌های جانبی نظیر کنترل فرکانس اهمیّت بیشتری می‌یابد. در حقیقت پس از جایگزینی تولید بادی با توربین بادی سرعت متغیّر و یا تولید خورشیدی به جای تولید متداول، لختی سیستم (جرم چرخان) نیز کاهش خواهد یافت. این جایگزینی نرخ تغییرات فرکانس را افزایش و مقاومت سیستم در قبال اغتشاشات وارده به شبکه را کاهش می‌دهد. اما تحقیقات اخیر نشان داده است، اگر کنترل مطلوبی بر توربین‌های مدرن بادی سرعت متغیّر صورت پذیرد، با وارد شدن نیروی بادی به شبکه لزوماً لختی شبکه کاهش نخواهد یافت [47] [48] [49] [50] [51] . ایده کار، به کار بردن انرژی چرخشی ذخیره شده در پره‌های توربین بادی جهت پشتیبانی کوتاه مدت توان اکتیو می‌باشد. توربین بادی سرعت متغیّر با سیستم کنترلی انعطاف پذیر مبتنی بر اصول الکترونیک قدرت مورد توجّه قرار گرفته‌اند. در نتیجه توان الکتریکی خروجی توربین بادی مدرن سرعت متغیّر بسته به فرکانس شبکه می‌تواند تغییر پیدا کند و در نتیجه پشتیبانی فرکانسی کوتاه مدت برای شبکه محیّا خواهد بود.

    در مرجع [47] نشان داده شده که اثر لختی توربین بادی از نوع ژنراتور القایی دو سو تغذیه (DFIG) بسته به خصوصیات پارامترهای کنترلر جریان روتور، از دید شبکه پنهان نیست. با داشتن کنترلر جریانی آهسته تر پاسخ لختی از سیستم ژنراتور القایی دو سو تغذیه قابل استحصال است. تحقیقات صورت گرفته در گزارش [48]، احتمال آزادسازی انرژی جنبشی در توربین بادی مبتنی بر ژنراتور القایی دو سو تغذیه بوسیله با اضافه کردن یک حلقه کنترلی جدید و حسّاس به فرکانس شبکه را به خوبی نشان می‌دهد. مقدار انرژی جنبشی آزاد شده بدین طریق در قیاس با آزاد سازی انرژی جنبشی در توربین بادی سرعت ثابت بیشتر خواهد بود. در سال 2004 سهم این نوع توربین‌ها از کل بازار تولید بادی جهان نزدیک به 60% بوده است [52].

     نتایج مشابهی در [49] به ثبت رسیده است. طرح مشابهی (سیگنال کنترلی اضافی وابسته به فرکانس شبکه) به منظور بدست آوردن پاسخ لختی سیستم ژنراتور القایی دو سو تغذیه در [50] [51] مورد توجّه قرار گرفته است. گزارش‌های اخیر، ایده استحصال بخشی از انرژی چرخشی موجود در قسمت چرخان توربین بادی جهت پشتیبانی کوتاه مدت توان اکتیو را با اصلاح کنترلر گشتاور توربین بادی، که می‌تواند عامل مثبتی در جهت کاهش افت فرکانسی اولیّه سیستم پس از بروز کسری تولید یا افزایش بار در شبکه می‌باشد را در ذهن تداعی کند.

    صبغه کار حاضر استفاده از مقدار بیشینه پشتیبانیِ موقّت توانِ اکتیوی است که با آزادسازی انرژی چرخشی پره‌های گردان یک توربین بادی چند مگاواتی دسترس قرار می گیرد (موجود در بازار برق – GE 3.6 MW  ). در این تحقیق شرکت دادن و مشخّص نمودن کاربرد پشتیبانی کوتاه مدت توان اکتیو، به صورت خاص، در یک شبکه دو ناحیه ای حرارتی مورد توجّه قرار گرفته است.

    ابتدا مقدار انرژی قابل استخراج از توربین‌ها با کمک گرفتن از مدل یک توربین بادی نمونه بوسیله استحصال توان اکتیو اضافی به صورت موقّت  از آن و در نظر گرفتن مدت زمانی که طول می‌کشد تا سرعت توربین به مرز کمینه سرعت کاری خود برسد، مشخّص می‌گردد. در مرحله بعد، بر اساس این اطلاعات (اینکه چه مقدار افزایش در توان اکتیو حاصل از توربین بادی برای چه مدت متناسب با سرعت وزش باد پابرجاست)، تابع کنترلی ساده ای در کنترل توربین بادی به کار برده شده ‌است و سهم آن در کاهش افت اولیّه فرکانس پس از کسر تولید در یک سیستم حرارتی، مشخّص می‌شود.

    3-2-1- کنترل فرکانس توربین بادی سرعت متغیّر

    در خلال عملکرد یک توربین بادی، مقداری انرژی در توربین و ژنراتور وجود دارد که کاملاً با ژنراتورهای متداول قابل قیاس است [51]. این انرژی جنبشی می‌تواند در خلال بروز اختلاف تولید و بار در شبکه چه به سبب افزایش بار یا کمبود تولید جهت تأمین پشتیبانی توان اکتیو موقّت  بکار برده شود. توربین بادی سرعت ثابت مستقیماً به شبکه متصل میشود و سرعت چرخشی آنها نمی‌تواند آزادانه تغییر کند. در سوی دیگر، توربین بادی سرعت متغیّر  معمولاً واسطه ای متشکّل از ادوات الکترونیک قدرت دارد که آنرا از شبکه جدا می‌نماید. توربین‌های بادی سرعت متغیّر به گونه ای طراحی شده‌اند تا بتوانند سرعت چرخش خود را در محدوده وسیع تری در خلال بهره برداری تغییر دهند. این کار امکان به کار گرفتن انرژی چرخشی موجود در توربین-ژنراتور را جهت تأمین پشتیبانی موقّت توان اکتیو در زمان بروز اغتشاشی در فرکانس شبکه بدست می‌دهد.

    3-2-2- مدل توربین بادی

    در پایان‌نامه حاضر توربین بادی سرعت متغیّر  با واسط الکترونیک قدرت جهت استحصال انرژی بادی حاصل از DFIG مورد استفاده قرار گرفته است. مدل منتشر شده ای از توربین بادی تجاری چند مگاواتی سرعت متغیّر در شبیه سازی این پایان نامه مورد استفاده قرار گرفته که از مراجع [53] [54] اقتباس گردیده است. بلوک دیاگرام مدل توربین بادی در شکل 3-1 نشان داده شده ‌است.

    شکل 3- 1 بلوک دیاگرام مدل توربین بادی سرعت متغیّر [35].

    همانطور که در رابطه (3-1) آمده است، سرعت مرجع  ، بر اساس توان الکتریکی ‌اندازه گیری شده  تولید می‌شود:

    (3-1)

    توان مکانیکی تولید شده  تابعی از سرعت باد ، سرعت روتور  و زاویه پره  می‌باشد:

    (3-2)

    که در آن  چگالی هوا،  محیط تحت پوشش پره در هوا،  مقدار بهینه  در  می باشد.

    مقادیر ضریب تأثیر قدرت   در چند جمله ای از درجه 4 متشکّل از  (نرخ سرعت پره) و  به منظور بیان ریاضی منحنی‌های  گنجانده شده ‌است. این چند جمله ای عبارتست از:

    (3-3)

    مقادیر ضرایب  در [35] در دسترس است.  به صورت زیر  تواند بیان شود:

    (3-4)

    که در آن  سرعت روتور در واحد مبنا،  سرعت باد به ،  سرعت مبنای روتور به  و  شعاع روتور به متر است.

    وقتی توان کمتر از 0.7 مبنای واحد است، مرجع سرعت بوسیله رابطه (3-1) محاسبه می‌شود. برای توان‌های بالاتر از 0.7 مبنای واحد، سرعت در مقدار 1.2 مبنای واحد ثابت می‌ماند. وقتی توربین بادی به محدودیت‌های حد بالای تولید توان خود می‌رسد، سرعت گردش روتور بوسیله کنترلر زاویه و با تغییر زاویه پره  کنترل می‌شود. سرعت روتور با بهره گرفتن از معادله لختی مدل تک-جرم معادل توربین-ژنراتور محاسبه می‌شود. معادله لختی از توان مکانیکی استخراج شده از نیروی بادی  و همچنین توان الکتریکی تزریق شده به شبکه  برای محاسبه سرعت روتور استفاده می‌کند. معادله لختی روتور به صورت زیر بیان می‌شود:

    (3-5)

    که در آن  و  به ترتیب گشتاور مکانیکی و الکتریکی می‌باشد. اگر به جای ،  گذاشته و دو طرف در  ضرب شوند، داریم:

    (3-6)

    جهت مطالعه بیشتر در باب مدل مورد مطالعه می‌توان به مراجع [53] [54] مراجعه کرد.

    منحنی‌های  توربین بر اساس رابطه (3-3) برای زاویه‌های مختلف شیب پره همانطور که در مراجع [53] [54] ذکر شده ‌است در شکل 3-2 رسم شده‌اند.

    شکل 3- 2 منحنی‌های C_p برای زاویه‌های پره متفاوت

    توان و سرعت روتور توربین محاسبه و در شکل 3-3 رسم شده‌اند.

    شکل 3- 3 توان و سرعت روتور توربین به عنوان تابعی از سرعت باد

    3-2-3- مقدارسنجی انرژی چرخشی قابل دسترسی از توربین-ژنراتور

    به منظور سنجش میزان انرژی قابل استخراج از توربین بادی، قدرتی که به شبکه تزریق می‌شود به صورت موقّت به مقدار  بالاتر از مقدار حالت مانگار آن  (که برای سرعت باد مشخّصی است) افزایش می‌یابد. به این منظور برای سرعت وزش کم و متوسط باد، کنترلر سرعت غیر فعّال شده و نقطه مرجع توان به صورت مستقل همانطور که در شکل 3-4 نشان داده شده ‌است، تنظیم می‌شود.

    مقدار انرژی بادی قابل استحصال قبل از رسیدن سرعت توربین به سرعت کمینه برای سرعت‌های متفاوت وزش باد محاسبه شده ‌است. این محاسبات به منظور تعین میزان پشتیبانی اضافی توان اکتیو یک توربین بادی سرعت متغیّر در سرعت مشخّصی از وزش باد (مضاف بر مقدار حالت ماندگار توان الکتریکی تزریقی توربین به شبکه در آن سرعت) همان انرژی مازادی که از انرژی جنبشی موجود در جرم چرخان توربین-ژنراتور  بدست می‌آید و همچنین به منظور مشخّص نمودن مدت زمان تداوم چنین پشتیبانی قبل از رسیدن سرعت توربین به محدودیت سرعت کمینه آن، صورت پذیرفته است.

    شکل 3- 4 مدل توربین بادی سرعت متغیّر برای وزش باد با سرعت‌های کم و متوسط (کنترلر زاویه غیر فعّال شده است) [35]

    شایان ذکر است، محاسبات تنها نیازمند به در دست داشتن مقادیر ثابت لختی معادل توربین-ژنراتور بادی ، منحنی  برای کمینه مقدار  و همچنین اطلاعات منحنی سرعت روتور توربین بادی بر اساس سرعت باد می‌باشد. این محاسبات ساده می‌تواند مشخّص نماید که چه میزان توان اکتیو اضافی قابل استحصال در مزرعه بادی موجود است که می‌تواند قابلیّت تزریق به شبکه جهت مطالعات پایداری سیستم قدرت گسترده و به صورت خاص، کنترل بار-فرکانس را داشته باشد.

    توجّه به این نکته ضروری است، تغییر در توان الکتریکی برابر با   به این معنی است که خروجی الکتریکی از توربین بادی، ، معادل است با  مبنای واحد(  بیشتر از مقدار حالت ماندگار برای این سرعت باد که برابر است با   مبنای واحد می‌باشد). توان اضافی  در مبنای واحد از طریق جذب بخشی از انرژی چرخشی موجود در توربین-ژترانور تأمین می‌شود.

    شکل3-5 توان مکانیکی جذب شده توربین بادی از انرژی باد را برای سرعت‌های مختلف وزش باد ( 6-11  ) نشان می‌دهد. متذکر می‌شود شکل این منحنی‌ها شدیداً به مقدار  توربین وابسته می‌باشد. همانطور که از شکل مشهود است، زمانیکه توان مکانیکی جذب شده بیشینه است، در هر سرعت باد به خصوصی سرعت روتور بهینه ای وجود دارد. این مطلب مبیّن این موضوع است عملکرد معمولی توربین بادی منوط به شرایطی است که توربین در نقطه بیشینه منحنی  مورد بهره برداری قرار بگیرد. در این شکل مطلب بوسیله به هم پیوستن نقاط پیداست.

    شکل 3- 5 توان مکانیکی تأمین شده از طرف DFIG برای سرعت‌های مختلف باد (B=0)

    به غیر از بهره برداری در این سرعت‌های بهینه روتور، توان مکانیکی جذب شده به صورت قابل توجّهی افت می‌کند. زمانیکه محدودیت بیشینه سرعت روتور حاصل می‌شود، با افزایش سرعت باد نقطه فعّالیت در صفحه  به سمت بالا رانده می‌شود (جهت حرکت در شکل3-2 ).

    انرژی چرخشی قابل استحصال از توربین-ژنراتور بر اساس مطالبی که در ابتدای بخش عنوان شد، محاسبه شده ‌است [35]. تعادل توان در خلال کاهش سرعت توربین بادی می‌تواند به صورت زیر بیان شود:

    (3-7)

    که در آن  تفاوت بین توان مکانیکی جذب شده  و توان الکتریکی تزریقی به شبکه  (توان شتابدهنده) نام دارند. اگر توان ورودی مکانیکی  با خروجی توان الکتریکی توربین  در حالت ماندگار برابر باشد و  کاهشی در توان مکانیکی ورودی به توربین به سبب کاهش سرعت چرخشی و خروج از نقطه بهینه باشد با توجّه به ، معادله (3-7) را می‌توان به صورت زیر بازنویسی کرد:

    (3-8)

     مدت زمان تداوم تغییر ورودی پله ای در توان الکتریکی  است که می‌تواند مضاف بر حالت ماندگار آن  برای سرعت بار مشخّصی قبل از رسیدن به حد کمینه سرعت توربین  استحصال گردد.

    سرعت روتور توربین بادی به صورت خطی با افزایش سرعت باد تا جایی افزایش می‌یابد  که از مرز بیشینه سرعت تجاوز ننماید (محدودیت بیشینه سرعت روتور برای این توربین 1.2 مبنای واحد می‌باشد). اگرچه کاهش توان ورودی مکانیکی به توربین ، از مقدار بهینه ، با افزایش سرعت باد افزایش می‌یابد (شکل3-5)، افزایش در  با افزایش سرعت باد کاهش توان ورودی مکانیکی به توربین را متوقف می‌سازد و با افزایش سرعت وزش باد، می‌توان افزایشی در  را انتظار داشت.

    از سوی دیگر، وقتی محدودیت بیشینه سرعت فرا می‌رسد، سرعت چرخش  با افزایش سرعت وزش باد، با افزایش توان ورودی مکانیکی ، افزایش نمی‌یابد. در پی افزایش سرعت وزش باد و افزایش روند کاهشی در توان مکانیکی از مقدار بهینه خود،  با افزایش سرعت وزش باد افزایش می‌یابد و همچنین کاهشی در  مورد انتظار است.

    انرژی چرخشی موجود برای سه مقطع مشخّص از سرعت وزش باد مورد سنجش قرار گرفته است:

    • سرعت کم وزش باد: مقطعی که در آن سرعت روتور کمتر از 1.2 مبنای واحد است
    • سرعت متوسط وزش باد: مقطعی که در آن سرعت روتور کمتر از 1.2 مبنای واحد و توان تولیدی کمتر از 1 مبنای واحد است.
    • سرعت زیاد وزش باد: مقطعی که در آن سرعت روتور و توان تولیدی به مقادیر بیشینه شان محدود شده‌اند (1.2 مبنای واحد و 1 مبنای واحد، به ترتیب) و زاویه شیب پره در مقدار بالاتری تنظیم شده ‌است.

    سرعت کم وزش باد: شکل (3-6) مدت زمان تداوم افزایش پله ای در خروجی توان الکتریکی  توربین بادی برای دو سرعت متفاوت وزش باد (7.5  و 10.1  ) قبل از رسیدن سرعت روتور به محدوده سرعت کمینه 0.7 مبنای واحد را نشان می‌دهد. همانطور که در شکل مشهود است مدت زمان تداوم افزایش پله ای در خروجی توربین بادی، وقتی مقدار توان الکتریکی پله ای افزایش میابد، روند نزولی به خود می‌گیرد.

    شکل 3- 6 مدت زمان تداوم افزایش توان پله ای موقت در خروجی توان الکتریکی توربین بادی برای سرعت‌های کم وزش باد

     در سرعت‌های بالاتر وزش باد، مدت زمان تداوم این افزایش موقّتی توان، در قیاس با سرعت‌های پایین وزش باد، کما اینکه انتظار می‌رود، بیشتر است. اگرچه که محدودیت کمینه سرعت توربین مورد بررسی GE 3.6 MW، 0.7 مبنای واحد در نظر گرفته شده ‌است، کاهش بیشتری نیز در سرعت روتور امکان پذیر است (0.5 مبنای واحد). در سرعت وزش باد 7.5  ، وقتی محدودیت کمینه سرعت، 0.5 مبنای انتخاب شود، توان اضافی معادل با 0.05 مبنای واحد برای مدت زمان 41 ثانیه متصوّر می‌باشد (در مقایسه با 36 ثانیه وقتی محدودیت کمینه سرعت 0.7 مبنای واحد در نظر گرفته شود) [35]. 

    سرعت متوسط وزش باد: محاسبات مشابهی برای سرعت‌های وزش باد 10 تا 11  انجام شده ‌است که به ترتیب معادل با 0.85 و 1 مبنای واحد از توان تولیدی بادی است (شکل3-7). در سرعت وزش باد 10.5 ، پشتیبانی توان اکتیوی معادل با 0.05 مبنای واحد، به مدت 38 ثانیه، قبل از اینکه سرعت روتور به محدوده کمینه سرعت مجاز روتور برابر با 0.7 مبنای واحد برسد، متصوّر می‌باشد (در سر عت 10 ، این ظرفیت معادل 49 ثانیه می‌باشد). در سرعت وزش باد 11 ، این ظرفیت به 30 ثانیه کاهش پیدا می‌کند. همانطور که انتظار می‌رفت، مدت زمان تداوم این پشتیبانی با افزایش سرعت باد در مطقعی که سرعت وزش باد متوسط است، کاهش پیدا می‌کند.

    شکل 3- 7 مدت زمان تداوم افزایش توان پله ای موقت در خروجی توان الکتریکی توربین بادی برای سرعت‌های متوسّط وزش باد

    علی رغم کاهش ظرفیت جهت تأمین چنین پشتیبانی توان اکتیوی در سرعت‌های متوسط وزش باد، توربین بادی مورد بررسی براحتی توانایی تأمین توان اکتیو اضافی معادل با 0.1 مبنای واحد برای بیش از مدت 20 ثانیه، پیش از رسیدن سرعت روتور به محدوده ی کمینه سرعت مجاز روتور را داراست.

    سرعت زیاد وزش باد: با افزایش سرعت وزش باد و در خلال وزش بادهای شدید، زمانی که سرعت توربین توسط کنترلر زاویه و با افزایش زاویه پره کنترل می‌شود، قدرت تولیدی به مقدار نامی آن محدود می‌شود. به عبارت دیگر، در خلال این وضعیت، افزایشی در خروجی الکتریکی  می‌تواند توسط مبدل الکترونیک قدرت فراهم گردد. البته با این شرط که درایو، ژنراتور و مبدل توانایی جذب این توان اضافی را در این زمان داشته باشند. در سرعت مشخّصی از وزش باد، افزایش در خروجی الکتریکی موقّتاً می‌تواند توسط افزایشی در ورودی توان مکانیکی بوسیله کنترلر زاویه (کاهش زاویه شیب) جبرانسازی شود. ذکر این نکته ضروری است، بسته به سرعت کنترلر زاویه، کاهش موقّتی در سرعت چرخش توربین ظاهر می‌گردد که منجر خواهد شد توربین بادی برای لحظاتی در سرعت بهینه نچرخد. این مسئله توان تولیدی بادی را پس از اعمال فرمان افزایش توان پس از میان رفتن افت فرکانس شبکه، برای لحظاتی کاهش خواهد داد. جنبه مهّم دیگر موضوع که قابل ذکر به نظر می‌رسد، مسائل مرتبط با

    ده‌های گذرای آئرودینامیکی کنترل زاویه می‌باشد. زمانیکه کاهشی در زاویه شیب پدید می‌آید، نیروی آئرودینامیکی از مقدار مثبت اولیّه خود با میزان فراجهش مشخّصی به مقدار مثبت بالاتری می‌رود [55] [56].  در نتیجه، حتی در خلال وزش بادهای شدید (سرعت وزش باد بالاتر از 11  )، پشتیبانی توان اکتیو اضافی نیز فراهم خواهد بود.

    شکل 3-8 زاویه شیب لازم برای تأمین سطوح متفاوتی از پشتیبانی توان اکتیو را برای سرعت‌های مختلف وزش باد، نشان می‌دهد.

    شکل 3- 8 زاویه شیب پره برای برداشت سطوح مختلف توان اکتیو در سرعت‌های بالای وزش باد

    شایان ذکر است، تغییر کمی در زاویه شیب پره از مقدار ابتدایی خود برای میسّر نمودن پشتیبانی توان اکتیو اضافی در هر سرعت باد معینّی لازم به نظر می‌رسد. همچنین، تغییر در میزان زاویه شیب پره جهت دریافت یک سطح معین از پشتیبانی برای سرعت‌های وزش باد کمتر، کمتر خواهد بود.

    البته، مقادیر نمودار‌های عنوان شده به ثابت لختی توربین بادی   و شکل منحنی  وابسته می‌باشد. ثابت لختی   و منحنی  برای انواع توربین‌ها متفاوت خواهد بود. در نتیجه مقادیر مورد نظر در اینجا می‌تواند متناسب با سازندگان مختلف توربین تغییر کند.

    3-2-4- کاربرد پشتیبانی موقّت  توان اکتیو DFIG در کنترل فرکانس سیستم قدرت

    شکل1-8 مدل خطی سیستم دو ناحیه ای قدرت را جهت انجام مطالعات کنترل بار فرکانس نشان می‌دهد. ناحیه کنترلی 1، ناحیه ای متشکّل از تولید حرارتی و همچنین تولیدی بادی سرعت متغیّر دو سو تغذیه DFIG را نشان می‌دهد. سیستم قدرت دو ناحیه ای حرارتی در اینجا مشابه سیستم قدرت ارائه شده در [2] می‌باشد. هر ناحیه متشکّل از یک واحد حرارتی با ظرفیت نامی 500 مگاوات می‌باشد. اطلاعات سیستم قدرت در جدول-1 در ضمیمه آمده است. پاسخ دینامیکی سیستم قدرت به انحراف باری معادل با 0.1 توان مبنای ناحیه 1 در حضور تولید بادی DFIG با ضریب نفوذ‌های مختلف، در نرم افزار Matlab/Simulink r2013a مورد بررسی قرار می‌گیرد. در بخش بعدی تغییرات بوجود آمده در لختی سیستم به سبب تغییر در ضریب نفوذ تولید بادی مورد بررسی قرار می‌گیرد.

    3-2-5- تغییر در تنظیم دروپ واحد‌های تولید بادی توسط DFIG بدون قابلیّت پشتیبانی فرکانس

    ساختار اصلی تنظیمات دروپ مانند قبل ثابت است؛ افزایش ضریب نفوذ بادی، افزایشی در دروپ معادل (کاهشی در بهره معادل دروپ) را به همراه دارد. با داشتن ضریبی معادل با ، تنظیم دروپ به فرم بیان شده در معادله 3-9 تغییر می‌نماید:

    (3-9)

    3-2-6- تغییر در ثابت لختی سیستم بدون پشتیبانی فرکانس از طرف تولید بادی

    افزایش ضریب نفوذ تولید بادی منجر به جایگزینی بیشتر آن با تولید متداول گشته و به طبع آن لختی سیستم نیز کاهش می‌یابد. این وضعیت به بدتر شدن وضعیت تنظیم فرکانس شبکه در نبود هیچ گونه پشتیبانی فرکانسی از طرف DFIG می انجامد.

    % ضریب نفوذ تولید بادی به معنای % کاهش در توان موجود در تولید متداول است. به این معنی که % از لختی شبکه کاسته شده و هیچگونه کنترل فرکانسی نیز در پی این جایگزینی تمهید نشده است. در نتیجه لختی سیستم به صورت زیر تغییر می‌کند:

    (3-10)

    در پی این تغییر و با افزایش ، لختی شبکه نیز کاهش می‌یابد و منجر به افت بیشتری در فرکانس می‌شود.

    3-2-7- تغییر در تنظیم فرکانس و ثابت لختی سیستم در حضور سیستم پشتیبانی فرکانس

    کنترلر سریع توان/گشتاور DFIG، فرکانس‌های الکتریکی و مکانیکی ماشین را از هم جدا می سازد و بدینوسیله عملکرد سرعت متغیّر آنرا فراهم می سازد. هر تغییری در سرعت سیستم در گشتاور و یا سرعت DFIG منعکس نمی‌شود؛ همانطوری که عملکرد ژنراتور-مبدل نیز مستقل از فرکانس شبکه است. در نتیجه، از دید شبکه، DFIG هیچ گونه لختی برای شبکه به همراه ندارد. هر چند که پاسخ لختی از طرف DFIG‌ها را می‌توان به کمک سیگنال‌های کنترلی کمکی فراهم کرد [47] [48] [49] [50] [51].

    ثابت لختی اصلاح شده سیستم در حضور تولید بادی DFIG با ضریب نفوذ  و با پشتیبانی فرکانس را می‌توان به صورت زیر عنوان کرد:

    (3-11)

    سهم لختی مزرعه بادی ، همانطوری که توسط سیستم قدرت تجربه می‌شود، در زمانی که توربین‌های بادی پشتیبانی موقّت  توان اکتیوِ اضافی معادل با  با تخلیه انرژی جنبشی موجود در جرم چرخان توربین را فراهم می‌کنند، توسط رابطه3-12 بیان می‌شود:

    (3-12)

    که در آن:

    (3-13)

    برای یک تغییر بار پله ای  و ضریب نفوذ مشخّصی از تولید بادی ، لختی توربین‌های بادی موقّتاً به لختی شبکه اضافه شود. به عبارت دیگر با تحویل توان اضافی، علاوه بر توان حالت ماندگار تحویلی توربین‌های بادی به کنترلر مبدل پاور الکترونیک، با جذب انرژی ذخیره شده در قسمت چرخان توربین‌ها لختی شبکه نیز به نسبت افزایش می‌یابد.

    سهم لختی توربین بادی ، بر اساس مدل تاخیری توربین- گاورنر که در [35] [57] بیان شده، بدست آمده است. ثابت لختی  مجدّداً می‌تواند برای ضریب نفوذ مشخّصی از تولید بادی و همچنین سطح مشخّصی از پشتیبانی موقّت توان اکتیو محاسبه شده و برای اصلاح ثابت لختی معادل سیستم، در معادله 3-10 وارد شود.

    مجموع تاخیر زمانی  که در معادله 3-12 عنوان شد، بر اساس مدلی است که در [57] بیان شده است.  زمانی است که در آن بیشترین تغییر فرکانس پس از بروز اغتشاشی در بار پدید می‌آید. این تاخیر متشکّل است از ثابت زمانی گاورنر ، ثابت زمانی ناشی ازحرکت دریچه شیر بخار  و همچنین تأخیر ناشی از پاسخ توربین .

    (3-14)

    از اینرو، مجموع تاخیر زمانی ، برای هر واحد تولیدی منحصر به فرد می‌باشد. برای نیروگاه‌های حرارتی می‌توان تأخیر زمانی را به صورتی که در ادامه می‌آید، نتیجه گرفت:

    • تأخیر زمانی مرتبط با گاورنر:
    • تأخیر زمانی ناشی از حرکت دریچه شیر بخار :
    برای توربین بخار باز گرم کن:
    • تأخیر ناشی از پاسخ توربین :
    برای تورین بخار باز گرم کن [35] :

    همانطور که عنوان شد، قابلیّت تنظیم فرکانس بر اساس رابطه 3-8 برای ضرایب نفوذ مختلف باد و شدّت باد، تغییر می‌کند. تغییر در لختی سیستم در ازای ضرایب مختلف نفوذ تولید بادی، متناسب با نقشی که تولید بادی در کنترل فرکانس شبکه می پذیرد، متفاوت است. تغییر لختی سیستم وقتی تولید بادی در کنترل فرکانس شرکت نمی‌کند مطابق رابطه 3-10 و وقتی در آن شرکت دارد برابر رابطه 3-11 تعیین می‌شود. با حضور تولید بادی DFIG بدون آنکه مدل جامع  DFIGدر آن وارد شود، مقادیر تخمینی تنظیم فرکانس و ثابت لختی شبکه در مدل خطی سیستم دوناحیه ای قدرت نشان داده شده در شکل 1-8 تغییر کرده و تاثیرات حضور سیستم کنترلی در آن در نظر گرفته می‌شود. جدول 3-1 مقادیر تخمینی تنظیم دروپ و لختی سیستم قدرت در حضور تولید بادی DFIG برای افزایش توان اکتیو معادل 0.05 توان مبنای مزرعه بادی در حضور ضرایب نفوذ متفاوت تولید بادی را نشان می‌دهد.

    در حضور قابلیت پشتیبانی فرکانس   بدون پشتیبانی فرکانسی   شاخص
    30% 20% 10%   30% 20% 10% 0% ضریب نفوذ
                    پارامتر
    0.0714 0.0625 0.055   0.0714 0.0625 0.055 0.05
    4.2185 4.5061 4.7654   3.5 4 4.5 5

    جدول 3- 1تغییر در تنظیم دروپ واحد های تولیدی و لختی سیستم برای ضریب نفوذ های متفاوت باد

    3-2-8- کنترلر پیشنهادی برای پشتیبانی توان اکتیو از DFIG برای کنترل فرکانس

    مشابه تولید متداول، توربین‌های بادی مقدار مشخّصی انرژی جنبشی در قسمت چرخان توربین خود ذخیره می کنند. در مورد توربین‌های بادی سرعت متغیّر این انرژی نقشی در کمک به لختی شبکه ندارد. زیرا ادوات الکترونیک قدرت حائل میان توربین بادی و شبکه، کوپلاژ میان سرعت چرخشی و فرکانس شبکه را از بین می‌برد. به عبارت دیگر حضور مبدل الکترونیک قدرت میان توربین بادی و شبکه، مفهوم لختی توربین‌های بادی را برای شبکه از میان می‌برد.

    معمولاً، کنترلرهای توربین بادی سرعت متغیّر سعی می‌کنند توربین‌ها را در سرعت بهینه‌ای مورد بهره برداری قرار دهند تا بتوانند بیشینه توان را متناسب با آن استحصال کنند. کنترلر بر اساس سرعت و توان الکتریکی اندازه گیری شده، نقطه مرجع گشتاور را تعیین می‌کند.

    همانطور که شکل (3-1) نشان می دهد نقطه مرجع گشتاور ، ورودی مبدل الکترونیک قدرت است که با کنترل کلیدزنی و تنظیم جریان خروجی مبدل، توان تحویلی به شبکه را تأمین می‌کند. برای بکار بردن انرژی و لختی توربین‌های بادی جهت تزریق توان اکتیو به شبکه و کمک به کنترل فرکانس، سیگنال کنترلی جدیدی مطابق با آنچه در شکل 3-9 در داخل خط چین نشان داده شده است، پیشنهاد می‌شود.

    این سیگنال کنترلی در زمان تشخیص انحراف فرکانس در شبکه، کنترل اولیّه فرکانس توربین‌های بادی  DFIG را فعّال کرده و تغییر توان اکتیوی متناسب با تغییرات فرکانس سیستم  و همچنین نرخ تغییرات فرکانس شبکه  برای شبکه قدرت فراهم می‌آورد. اثر لختی توربین‌های بادی با ثابت کنترلر  و پشتیبانی کنترل اولیّه فرکانس نسبت مستقیم با  دارد. این افزایش توان علاوه بر مقدار توان تحویلی توربین‌های بادی قبل از بروز اغتشاش بار  بوده و با اعمال سیگنال کنترلی جدید انرژی جنبشی موجود در جرم چرخان توربین‌ها به این مقدار اضافه شده و مقدار جدیدی  را اخذ می کند. لازم به ذکر است بخاطر جذب انرژی جنبشی موجود در توربین‌های چرخان بادی جهت تزریق آن به شبکه، سرعت چرخش توربین‌ها از سرعت بهینه شان کاهش می‌یابد. نرخ کاهش سرعت توربین بادی به تغییرات فرکانس و نرخ تغییرات آن وابسته است.

    ذکر این نکته ضروری است، توان اکتیو اضافی DFIG، تنها در دوره ای گذرا در کنترل اولیّه فرکانس شرکت دارد. وقتی سیستم به حالت ماندگار جدیدی دست پیدا کرد که با حالت بهینه آن اختلاف دارد، نرخ تغییرات فرکانس توسط ثابت میراکنندگی بار و تنظیم دروپ سیستم تاثیر می پذیرد. کنترلر انتگرالگیر

    شکل 3- 9 کنترلر پیشنهادی برای پشتیبانی فرکانس

    حلقه ثانویه کنترل (AGC) سعی در از بین بردن خطای حالت ماندگار شبکه می‌نماید و فرکانس شبکه و توان انتقالی خطوط را به مقدار نامی و از پیش مقرّر شده آن باز می‌گرداند. در نتیجه، سیگنال کنترلی اضافی ای که برای مبدل الکترونیک قدرت در نظر گرفته شده بود و به عنوان تابعی از تغییرات فرکانس و نرخ تغییرات فرکانس عمل می‌کرد(شکل 3-9 )، غیرفعّال شده و عملکرد نرمال DFIG پیگیری می‌گردد تا مجدّداً سرعت چرخش توربین‌های بادی را به میزان بهینه آن باز گرداند و زمینه مشارکت‌های بعدی را فراهم کند.

    3-3- مشارکت واحد های تولید توان خورشیدی در کنترل فرکانس شبکه

    با توجّه به سابقه تحقیق مطرح شده در باب کنترل فرکانس سیستم‌های تولید انرژی خورشیدی که در فصل پیش آمد، مشخّص شد، جایگزینی تولید خورشیدی به جای تولید متداول مستقیماً لختی شبکه را کاهش می‌دهد. علاوه بر آن با توجّه به نوسانات تابشی خورشید، توان استحصالی از انرژی خورشید ثابت نبوده و با تغییر شدّت تابش خورشید، تغییر می‌کند. خصوصیاتی که استحصال انرژی توسط سیستم‌های خورشیدی به صورت MPPT به دنبال دارد، ویژگی‌های مطلوبی برای بهره‌برداری از تولید خورشیدی در مقیاس بالا نیست. ورود یک چنین منبع کنترل نشده‌ای به شبکه، بار اضافی برای سیستم‌های کنترل فرکانس به حساب می‌آید.

    در این بخش ابتدا به چگونگی جذب انرژی خورشیدی توسط پانل‌های خورشیدی و معادلات مربوطه بیان می‌شود. در ادامه استراتژی کنترلی مناسبی برای شرکت دادن تولید خورشیدی در کنترل اولیّه فرکانس بیان می‌شود. تاثیرات استفاده از یک چنین سیستم کنترلی بر روی سیستم قدرت مدل شده و ساختار کنترل فرکانس بار شبکه در حضور این کنترلر به روز می‌شود.

    3-3-1- مشخّصات پانل‌های خورشیدی و مدلسازی آنها

    در اینجا به صورت مختصر خصوصیات و مدل ماژول‌های خورشیدی بیان می‌شود [58]. ماژول خورشیدی، تجهیزی غیر خطی است که می‌توان آنرا همانطور که در شکل 3-10 آمده به عنوان منبع جریان در نظر گرفت.

    با صرفنظر از مقاومت‌های سری داخلی ، می‌توان معادلات متداول  یک ماژول خورشیدی را به صورت بیان شده در رابطه 3-16 ذکر کرد:

    (3-16)

    شکل 3- 10 مدار معادل ماژول خورشیدی [21]

    که در آن  و  به ترتیب جریان و ولتاژ خروجی ماژول خروجی می باشند.  جریان تولیدی تحت تابش خورشیدی،  جریان اشباع معکوس،  شارژ الکتریکی الکترون،  ثابت بولتزمن،   فاکتور ایده‌آلی دیود،  دمای ماژول خورشیدی (به کلوین)،  تعداد سلول‌های خورشیدی موازی و  جریان ذاتی شاخه مقاومت موازی ماژول خورشیدی است. همانطور که در معادله 3-17 فرمول بندی شده، جریان اشباع ماژول خورشیدی  با نوسانات دما تغییر می‌کند:

    (3-17)
    (3-18)

    که در آن  جریان اشباع در دمای مرجع ،  انرژی باند خالی،  ضریب تاثیر دمای جریان اتصال کوتاه ماژول خورشیدی است. مقدار جریان شاخه‌های موازی به صورت زیر حاصل می‌شود:

    (3-19)

    که در آن  تعداد سلول‌های سری و  مقاومت موازی داخلی ماژول خورشیدی است.

    شکل 3-11 ساختار کلی ژنراتور خورشیدی متصل به شبکه را نشان می دهد.

    شکل 3- 11 ژنراتور خورشیدی متصل به شبکه

    با توجه مدلسازی که بیان شد، در یک تابش مشخصی از خورشید و یک دمای معین، پانل‌های خورشیدی با توجه به ولتاژ نقطه کار خود توان جریان مشخصی را تولید می کند. این نقطه کار با توجه به ولتاژ  ماژول خورشیدی حاصل می شود. این ولتاژ از طریق رفرنس ولتاژ واسط الکترونیک قدرت به این ادوات اعمال می شود. برای یک ماژول خورشیدی معادلات بیان شده در 3-16 الی 3-19، در نرم افزار Matlab/Simulink r2013a مدل شده و به ازاء تغییرات رفرنس ولتاژ ماژول‌های خورشیدی، منحنی‌های  و  به ازاء تابش‌های مختلف خورشید برای دمای عادی محیط معادل با 300 درجه کلوین (27 درجه سانتیگراد)، در شکل‌های 3-12و 3-13 رسم شده اند. از این نمودار‌های اینطور استنباط می‌شود که آرایه‌های خورشیدی غیر خطی‌اند و نقطه کار آنها به شدّت با تغییر تابش خورشید و همچنین ولتاژ رفرنس تغییر می‌کند.

    شکل 3- 12 منحنی V_I ماژول خورشیدی

     

     

     

    شکل 3- 13 منحنی V_P ماژول خورشیدی

    3-3-2- استراتژی کنترلی پیشنهادی برای مزرعه خورشیدی

    همانطور که بیان شد می‌توان دینامیک سیستم قدرت متشکّل از چندین ژنراتور سنکرون را به فرم خطی شده زیر مدل کرد [2]:

    (3-20)

    که در آن  فرکانس سیستم در مبنای واحد،  و  به ترتیب توان مکانیکی و الکتریکی کل در مبنای واحد،  ثابت لختی به ثانیه و  عامل میراکننده در مبنای واحد است. به خاطر اینکه معمولاً ثابت زمانی بزرگی در ارتباط با دینامیک توان مکانیکی  وجود دارد (نظیر دینامیک بویلر)، در چهارچوب زمانی کوتاه مدت لختی سیستم نقشی مهّم در تعیین حسّاسیت فرکانس سیستم نسبت به عدم تعادل میان تولید و مصرف دارد. از طرفی عامل میراکننده تعیین کننده قابلیّت سیستم در جذب عدم تعادل توان و کم کردن تغییرات حالت ماندگار فرکانس سیستم دارد.

    3-3-3- تغییر در تنظیم دروپ واحد‌های تولیدی در حضور تولید خورشیدی با ضریب نفوذ

    ساختار اصلی تنظیمات دروپ مانند قبل ثابت است؛ افزایش ضریب نفوذ بادی، افزایشی در دروپ معادل (کاهشی در بهره معادل دروپ) را به همراه دارد. با داشتن ضریبی معادل با ، تنظیم دروپ به فرم بیان شده در معادله 3-21 تغییر می نماید:

    (3-21)

    3-3-4- تغییر در ثابت لختی سیستم در حضور تولید خورشیدی

    همانند تولید بادی، در حضور تولید خورشیدی با ضریب نفوذ  در شبکه معادله تعادل توان 3-19 کماکان برقرار است. ولی از آنجا که تولید خورشیدی هیچ جرم چرخانی ندارد و انرژی ذخیره شده ای در خود ندارد، حضور تولید خورشیدی با ضریب نفوذ   در شبکه منجر به کاهش لختی سیستم صورت معادله 3-22 می‌شود:

    (3-22)

    در چنین شرایطی اگر تولید خورشیدی سهمی در توانایی تنظیم فرکانس نداشته باشد، تغییرات بار در شبکه منجر به تغییرات شدیدتری در فرکانس سیستم خواهد شد.

    3-3-5- مشارکت واحد تولید خورشیدی در تنظیم فرکانس شبکه

    جهت فائق آمدن بر مشکلات نامطلوب ورود تولید سیستم‌های خورشیدی، طرح کنترلی جدیدی برای شرکت دادن تولید خورشیدی در تنظیم فرکانس سیستم قدرت پیشنهاد شد [29]. در این طرح کنترلی، برای اینکه سیستم خورشیدی تنظیماتی مشابه تنظیم دروپی مشابه با ژنراتورهای سنکرون داشته باشد، یک گاورنر سرعت مجازی برای آن طراحی شده است. علاوه بر آن زمانی که کسری بار یا افزایش تابش شدیدی رخ داد، می بایست توان خروجی واحد خورشیدی سریعاً محدود گردد تا عدم تعادل توان تغییرات توان کمینه گردد. پس از یک تاخیر زمانی، سیستم خورشیدی می‌تواند مجدّداً به حالت کنترل دروپ خود باز گردد.

    از مدل تک خطی سیستم خورشیدی متصل به شبکه که در شکل 3-11 نشان داده شده است، نیز می‌توان برای نشان دادن طرح کنترلی استفاده شود. لازم به ذکر است در طرّاحی فعلی، از دینامیک سریع اندوکتانس داخلی اینورتر در مقایسه با دیگر اجزای سیستم صرفنظر شده است [59] .همانطور که در شکل 3-14 نشان داده شده است استراتژی کنترلی را می‌توان در سه سطح بیان نمود:

    شکل 3- 14 ساختار اصلی سیستم کنترلی

    در سطح 1، یک کنترلر PWM مطابق حلقه دوگانه کنترلی مشغول بکار خواهد بود (جهت اطلاعات بیشتر به [21] مراجعه شود). حلقه خارجی ولتاژ آرایه خورشیدی  و توان راکتیو  آنرا کنترل می‌کند، در

    متن کامل پایان نامه مقطع کارشناسی ارشد رشته : زمین شناسی مهندسی

    عنوان : بررسی روند تغییرات میزان نفوذپذیری خاک در عرصه‌های پخش سیلاب پسکوه سراوان از دیدگاه زمین‌شناسی مهندسی و ارائه راه کارهای مهندسی در ارتباط با آن

    مرور ادامه

    متن کامل پایان نامه مقطع کارشناسی ارشد رشته :مهندسی عمران

    گرایش :سازه

    عنوان : محاسبه کاهش سختی خمشی تکیه گاه ها در تیرها به روش معکوس با داده های ارتعاش آزاد در حضور یک سیستم یک درجه آزادی آزمون

    مرور ادامه

    متن کامل پایان نامه مقطع کارشناسی ارشد رشته :عمران

    گرایش :سازه

    عنوان : بررسی آزمایشگاهی خواص مكانیكی بتن خود تراكم حاوی ضایعات لاستیك تحت درجه حرارت های بالا

    مرور ادامه

    متن کامل پایان نامه مقطع کارشناسی ارشد رشته : مدیریت بازرگانی

    گرایش :تحول

    عنوان : ارائه مدلی جهت مهندسی مجدّد ساختار سازمانی شرکت گاز گیلان به منظور توسعه فناوری

    مرور ادامه

    متن کامل پایان نامه مقطع کارشناسی ارشد رشته :کشاورزی

    عنوان : پایان نامه جهت دریافت درجه کارشناسی ارشد در رشته مهندسی کشاورزی – زراعت (M.Sc) اثر اعمال تیمارهای مختلف در شکستن خواب  و جوانه زنی بذور علف های هرز یولاف وحشی و بارهنگ

    مرور ادامه

    متن کامل پایان نامه مقطع کارشناسی ارشد رشته :مدیریت

    گرایش : مدیریت صنعتی- تولید

    عنوان : بررسی تأثیر مدیریت زمان و نقش مهندسی ترافیک در ارزیابی مؤثر کار و زمان جهت تصمیمات قیمت گذاری کرایه حمل و نقل بنگاه های تولیدی و حمل و نقل

    مرور ادامه

    دانلود متن کامل پایان نامه مقطع کارشناسی ارشد رشته زمین شناسی

    گرایش : زمین شناسی مهندسی

    عنوان : مطالعات زمین شناسی مهندسی و ژئوتكنیكی گستره غرب كوی ولیعصر تبریز با نگرش ویژهء تأثیر آبهای زیرزمینی بر مخاطرات محتمل 

    مرور ادامه

    دانلود متن کامل پایان نامه رشته سازههای آبی

    عنوان : بررسی تأثیر پارامترهای هندسی آبشكن و عمق كارگذاری ریپ رپ جهت محافظت از آبشكن در قوس 90 درجه

    مرور ادامه

    دانلود متن کامل پایان نامه مقطع کارشناسی ارشد رشته صنایع غذایی

    عنوان : بررسی تاثیر عصاره موسیر و زردچوبه و ترکیب آنها بر مدت ماندگاری خمیر ماهی کپور در شرایط انجماد 18- درجه سانتی گراد

    مرور ادامه

    دانلود متن کامل پایان نامه مقطع کارشناسی ارشد رشته مهندسی ابزار دقیق و اتوماسیون صنایع نفت

    عنوان : کنترل بهینه و تصحیح خطای صفحه پایدار ژیروسکوپی سه درجه آزادی نصب شده بر روی یک جسم پرنده

    مرور ادامه

    دانلود متن کامل پایان نامه مقطع کارشناسی ارشد رشته مهندسی عمران

    گرایش : زلزله

    عنوان : بررسی تاثیر کاهندگی بر ظرفیت فروریزش سازه ­های چند درجه آزادی

    دانشگاه آزاد اسلامی

    واحد شهرکرد

    پایان نامه كارشناسی ارشد در رشته مهندسی عمران

    گرایش زلزله

    عنوان :

    بررسی تاثیر کاهندگی بر ظرفیت فروریزش سازه­ های چند درجه آزادی

    استاد راهنما :

    دكتر غلامرضا قدرتی امیری

    مرور ادامه

    دانلود متن کامل پایان نامه مقطع کارشناسی ارشد رشته عمران

    گرایش :زلزله

    عنوان : بررسی تاثیر کاهندگی بر ظرفیت فروریزش سازه­ های چند درجه آزادی

    مرور ادامه

    دانلود متن کامل پایان نامه مقطع کارشناسی ارشد رشته مهندسی برق

    گرایش : قدرت

    عنوان : ارتقاء کیفیت توان درشبکه های تجدید ساختاریافته با حضور منابع تولید پراکنده

    مرور ادامه

    دانلود متن کامل پایان نامه مقطع کارشناسی ارشد رشته مهندسی برق

    گرایش : قدرت

    عنوان : استراتژی بهینه قیمت دهی در بازار عمده فروشی برق با بهره گرفتن از الگوریتم دینامیکی pso مبتنی بر gso

    مرور ادامه

    دانلود متن کامل پایان نامه مقطع کارشناسی ارشد رشته مهندسی برق

    گرایش : قدرت

    عنوان : مکان یابی بهینه واحدهای تولید پراکنده در میکروگرید با در نظر گرفتن توان اکتیو و راکتیو

    مرور ادامه

    دانلود متن کامل پایان نامه مقطع کارشناسی ارشد رشته مهندسی نساجی

    گرایش : شیمی نساجی

    عنوان : بررسی امکان استخراج الیاف بلند طبیعی سلولزی از  برگ گیاه Typha australis

    مرور ادامه

    دانلود متن کامل پایان نامه مقطع کارشناسی ارشد رشته کشاورزی

    گرایش:ترویج

    عنوان:رشته مهندسی کشاورزی-ترویج و آموزش کشاورزی-عوامل مؤثر بر استقرار مدیریت دانش در بانک کشاورزی استان قم

    مرور ادامه

    دانلود رایگان متن کامل پایان نامه مقطع کارشناسی ارشد رشته  مهندسی کشاورزی 

    گرایش : زراعت

    عنوان : تاثیرچند کشتی همزمان بر عملکرد دانه ارقام گلرنگ در منطقه آران وبیدگل

    مرور ادامه

    دانلود رساله دكتری مهندسی عمران 

    با عنوان:توسعه منحنی های شكنندگی در سازه های بلند بتن آرمه با هسته مركزی با توجه به ارائه مفهوم توزیع مکانی پارامترهای تقاضا تحت اثر تحریكات لرزه ای دوجهته

    مرور ادامه

    دانلود پایان نامهكارشناسی ارشد در رشته مهندسی عمرانگرایشمهندسی و مدیریت ساخت

    با عنوان:نفوذپذیری بتن ها تحت اعمال توامکربناسیون و نفوذ یون کلراید

    مرور ادامه

    دانلود پایان نامهكارشناسی ارشد در رشته مهندسی عمرانگرایش (مهندسی عمران- مهندسی آب و فاضلاب)

    با عنوان:شبیه سازی رواناب روزانه  با بهره گرفتن از الگوریتم PSO   در بهینه سازی مدل های حوضه آبریز

    مرور ادامه

    متن کامل پایان نامه مقطع کارشناسی ارشد رشته مهندسی برق

    با عنوان : طراحی و شبیه سازی شتاب سنج خازنی میکروماشینی با دو درجه آزادی

    در ادامه مطلب می توانید تکه هایی از ابتدای این پایان نامه را بخوانید

    و در صورت نیاز به متن کامل آن می توانید از لینک پرداخت و دانلود آنی برای خرید این پایان نامه اقدام نمائید.

    مرور ادامه