دانلود متن کامل پایان نامه مقطع کارشناسی ارشد رشته مهندسی کامپیوتر

گرایش هوش مصنوعی

با عنوان : استخراج ویژگی مناسب برای تشخیص سیگنال­های حرکات ارادی EEG

دانشگاه صنعتی شاهرود

دانشکده مهندسی کامپیوتر و فناوری اطلاعات

پایان نامه جهت اخذ درجه کارشناسی ارشد

گروه هوش مصنوعی

عنوان:

استخراج ویژگی مناسب برای تشخیص سیگنال­های حرکات ارادی EEG

اساتید راهنما:

دكتر علی اکبر پویان

استاد مشاور:

دکتر کاویان قندهاری

دکتر هادی گرایلو

برای رعایت حریم خصوصی نام نگارنده پایان نامه درج نمی شود

تکه هایی از متن پایان نامه به عنوان نمونه :

(ممکن است هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است)

فهرست مطالب:

فصل اول

مقدمه.

1-1-  مقدمه……………………………… 1

1-2-  تاریخچه BCI…………………………….

1-3-  کاربردهای BCI…………………………….

1-4-  تعریف مساله…………………………….. 7

1-5   – ساختار پایان نامه…………………………….. 7

فصل دوم

سیگنالهای مغزی………………………………

2-1- مقدمه…………………………….. 9

2-2- کشف سیگنالهای مغزی……………………………… 10

2-3- ثبت سیگنالهای مغزی……………………………… 11

2-4- پیش پردازشها روی سیگنالهای مغزی……………………………… 12

فصل سوم

مروری بر تحقیقات انجام شده در زمینه دسته بندی سیگنالهای مغزی…………….

3-1- مقدمه…………………………….. 16

3-2- معرفی داده ­های موجود…………………………….. 17

3-2-1- مشخصات دادههاي ثبت شده توسط گروه دانشگاهColorado……………..

3-2-2- مشخصات داد ههاي ثبت شده توسط گروه Graz……………………………..

3-2-3- مشخصات دادههای MIT-BIH……………………………….

3-3- استخراج ویژگی……………………………… 20

3-4- دسته بندی……………………………… 23

فصل چهارم.

مقایسه تحلیلی تبدیل فوریه ، موجک و والش  

4-1- مقدمه…………………………….. 25

4-2- تبدیل فوریه…………………………….. 25

4-3- تبدیل موجک……………………………….. 30

4-3-1- مقیاس…………………………….. 32

4-4- تاریخچه تبدیل والش……………………………….. 35

4-4-1- توابع والش………………………………… 35

4-4-2- تبدیل والش………………………………… 36

فصل پنجم

توصیف روش پیشنهادی 

5-1- مقدمه…………………………….. 40

5-2- پایگاه داده مورد استفاده……………………………. 40

5-3- حذف نویز…………………………….. 42

5-3-1- آنالیز مولفه های مستقل……………………………… 43

5-3-2- حذف نویز با بهره گرفتن از آنالیز مولفه های مستقل…………. 44

5-3-3- حذف نویز با بهره گرفتن از تبدیل موجک……………………………….. 46

5-3-4- حذف نویز با بهره گرفتن از تبدیل والش………………………………… 47

5-3-5- حذف نویز با بهره گرفتن از روش ترکیبی تبدیل والش و ICA……………

5-4- استخراج ویژگی……………………………… 51

5-4-1- آنتروپی …………………………….  52

5-4-2- استخراج ویژگی با بهره گرفتن از تبدل والش………………. 53

5-4-3- استخراج ویژگی با استفاده تبدیل فوریه و موجک……………. 53

5-5- ماشین بردار پشتیبان (Support Vector Machin)…………………………….

5-5-1- ابر صفحه جداساز…………………………….. 55

5-5-2- جداسازی غیر خطی………………………………. 58

فصل ششم

نتایج و نتیجه گیری………………………………

6-1- مقدمه…………………………….. 60

6-2- حذف نویز…………………………….. 61

6-3- معیارهای ارزیابی……………………………… 65

6-3-1- نسبت سیگنال به نویز (Signal to Noise Rate)…………………………….

6-3-2- میانگین مربع خطا (Mean Square Error)…………………………….

6-3-3- جذر میانگین تفاضل مربعات(درصد)(Percentage Root Mean Square Difference)………..

6-4- استخراج ویژگی……………………………… 68

6-4-1- ویژگیهای تبدیل والش………………………………… 69

6-4-2- ویژگیهای تبدیل فوریه…………………………….. 72

6-4-3- ویژگیهای تبدیل موجک……………………………….. 76

6-5- مقایسه با کارهای مرتبط بر روی این مجموعه داده………….. 80

6-6- نتیجه گیری……………………………… 83

6-7- پیشنهاد ها……………………………. 85

منابع:………………………………. 86

چکیده:

در این پایان نامه قصد داریم با ارائه یک ویژگی مناسب عمل دسته بندی را بر روی سیگنال­های مغزی انجام دهیم. برای این منظور ابتدا از سیگنالهای مغزی نویز دستگاه ثبت حذف می شود سپس از این سیگنال­­ها با بهره گرفتن از تبدیل والش و آنتروپی ویژگی استخراج می شود. بعد از استخراج ویژگی ، بر اساس این ویژگی­ها عمل دسته بندی انجام می شود.

اولین پیش پردازش برای دسته بندی سیگنال­های مغزی حذف نویز از این سیگنال­ها می­باشد. در این پایان نامه دو روش کلاسیک حذف نویز و دو روش پیشنهادی حذف نویز بررسی می­شود. ابتدا با بهره گرفتن از روش کلاسیک ICA ، تبدیل موجک و دو روش پیشنهادی تبدیل والش و روش ترکیبی والش و ICA از سیگنال حذف نویز می­شود. برای داشتن یک ارزیابی از این چند روش، نتایج حاصل از این چهار روش با بهره گرفتن از سه معیار، نسبت سیگنال به نویز(SNR)، میانگین مربع خطا(MSE) و جذر میانگین تفاضل مربعات(درصد) (PRD) ارزیابی می­شود. نتایج ارزیابی با بهره گرفتن از این معیار­ها نشان داد که روش ترکیبی والش و ICA و تبدیل والش دارای کمترین مقدار میانگین مربع خطا می­باشد. همچنین این دو روش دارای بیشترین مقدار نسبت سیگنال به نویز و جذر میانگین تفاضل مربعات(درصد) است.

بعد از حذف نویز از سیگنال، به بحث استخراج ویژگی از سیگنال­ها و دسته بندی آنهاپرداخته می­شود. ویژگی­های استخراج شده تعداد ویژگی کمی می باشد و یک بردار ویژگی 22 مولفه ای است. این ویژگی ها مربوط به آنتروپی تبدیل والش کانال های سیگنال، آنتروپی تبدیل والش کل سیگنال، توان تبدیل والش کانال های سیگنال و توان تبدیل والش کل سیگنال می­باشد. برای ارزیابی کارایی این ویژگی­ها همین ویژگی­ها، نیز با بهره گرفتن از تبدیل موجک و فوریه استخراج می­شوند و عمل دسته بندی بر اساس ویژگی­های استخراجی این سه روش به طور جداگانه انجام می­شود. بعد از استخراج ویژگی، بر اساس ویژگی­های استخراجی، به دسته بندی سیگنال­ها با بهره گرفتن از طبقه بندی کننده SVM و نزدیکترین همسایه پرداخته می شود. نتایج حاصل نشان می­دهد که دسته بندی با بهره گرفتن از ویژگی­های استخراجی تبدیل والش به مراتب بهتر از دسته بندی بر اساس ویژگی­های دو تبدیل دیگر است. نرخ تشخیص با بهره گرفتن از روش پیشنهادی و svm، 42.5 درصد و با روش نزدیکترین همسایه 39.0 درصد است.

در مقایسه ای دیگر، نتایج حاصل با نتایج پیاده سازی شده بر روی این مجموعه داده، در چهارمین دوره مسابقات BCI مقایسه شده است. نتایج نشان داد که روش دسته بندی با بهره گرفتن از تبدیل والش از همه­ی روشها به جز نفر اول بهتر است.. ولی مزیتی که روش پیشنهادی نسبت به همه روشها دارد این است که در بحث زمانی این روش دارای مجموع زمان تست و آموزش کمی است. این زمان 52 ثانیه می باشد که نسبت به روش اول که 403 و 640 ثانیه است به مراتب بهتر است.

فصل اول: مقدمه

1-1- مقدمه

تعامل انسان با کامپیوتر (HCI)[1] امروزه کاربردهای گسترده ای دارد. این رشته علم بررسی تعامل کامپیوتر و انسان است. در واقع این علم نقطه تقاطع دانش کامپیوتر، علوم رفتارشناسی طراحی و چند علم دیگر است. ارتباط و تعامل کامپیوتر وانسان از طریق واسط اتفاق می‌افتد. که شامل نرم‌افزار و سخت‌افزار است. یک تعریف دقیق آن چنین است:

علم تعامل کامپیوتر و انسان یک رشته مرتبط با طراحی ارزیابی و پیاده سازی سیستم‌های محاسباتی متقابل برای استفاده انسان در مطالعه پدیده‌های مهم پیرامون اوست. این رشته شاخه‌هایی از هر دو طرف درگیر را شامل می‌شود مثلا گرافیک کامپیوتری، سیتم‌های عامل، زبان­هایی برنامه نویسی، تئوری ارتباطات و طراحی صنعتی برای قسمت کامپیوتری زبان‌شناسی، روانشناسی و کارایی انسان برای قسمت انسانی آن. این رشته به شاخه های زیادی تقسیم می­شود که یکی از آنها واسط مغز و کامپیوتر(BCI)[2] است.

مغز انسان توانايي انتشار امواجي الكتريكي و مغناطيسي را دارد كه مي توان با ثبت آنها علاوه بر كاربردهاي پردازشي به تشخيص برخي بيماري­ها و حتي برقراري ارتباط به صورت تلپاتي پرداخت. يكي از روش­هاي ثبت اين سيگنالها EEG)) [3] مي­باشد.

سیگنال­های الکتریکی مغزی را اولین بار دکتر هانس برگر[4] در سال 1920 شناسایی و ثبت کرد. با ثبت این سیگنال­ها تلاش انسان برای استفاده از این سیگنال­ها برای کاربرد­های مختلف شروع شد. اکنون بیشترین استفاده­های که از این سیگنال­های می­شود در تشخیص پزشکی و کمک به افراد ناتوان جسمی و فکری است[1]. در اوایل ثبت این سیگنال­ها، به خاطر آشفته بودن و نویزی بودن این سیگنال­ها کار کردن بر روی و استخراج اطلاعات مفید از آنها مشکل بود.

در اوایل کشف سیگنال­های مغزی به دلیل نبودن دستگاه­های ثبت و ضبط مناسب انسان به این تصور بود که ارتباط انسان با محیط اطرافش سخت و غیر ممکن است. اما با پیشرفت­های که در حوزه رایانه و الکترونیک صورت گرفت و با ابداع ابزار­های مناسب جهت ثبت سیگنال­های مغزی این ارتباط دور از دسترس نیست. امروزه BCI علمی است که این ارتباط را برقرار می کند.

واسط مغز و رایانه از مجموعه‌ای از سنسور­ها و اجزای پردازش سیگنال تشکیل می­شود که فعالیت مغزی فرد را مستقیما به یک سری سیگنال‌های ارتباطی یا کنترلی تبدیل می‌کند. در این سامانه ابتدا باید امواج مغزی را با بهره گرفتن از دستگاه‌های ثبت امواج مغزی ثبت کرد که معمولا به دلیل دقت زمانی بالا و ارزان بودن و همچنین استفاده آسان، از EEG برای ثبت امواج مغزی استفاده می‌شود. الکترودهای EEG در سطح پوست سر قرار می‌گیرند و میدان الکتریکی حاصل از فعالیت نورون‌ها[5] راه اندازه­گیری می‌کنند. در مرحله بعد این امواج بررسی شده و ویژگی‌های مورد نظر استخراج می‌شود و از روی این ویژگی‌ها می­توان حدس زد که کاربر چه فعالیتی را در نظر دارد. در شکل(-11) واحد­های پردازشی سیستم BCI را می­بینیم.

با توجه به پایین بودن نسبت سیگنال به نویز در این سیستم ابتدا یک پیش پردازش و عملیات حذف نویز بر روی این سیگنال ها انجام می­شود. مرحله بعد مرحله استخراج ویژگی است که در فصل­های بعد در مورد انواع ویژگی­ها و روش های استخراج ویژگی صحبت می­کنیم در نهایت با بهره گرفتن از ویژگی­های استخراج شده عمل دسته­بندی را انجام می­دهیم.

واسط مغز و رایانه ممکن است ساختاری ثابت داشته باشد یا اینکه به صورت انطباقی باشد و خود را با مشخصه یا مشخصه­های سیگنال انطباق بدهد. همچنين ممكن است از خروجي سيستم به نوعي به شخص مورد آزمايش فيدبك[6] داده شود. اين روش به بيوفيدبك مشهور است.

در اولین همایش بین المللی که در ژوئن 1999 برگزار شد یک تعریف معمول برای BCI به صورت زیر ارائه شد[2]: (یک واسط مغز و رایانه یک سامانه ارتباطی است که وابسته به مسیرهای خروجی نرمال سامانه عصبی جانبی و ماهیچه‌ها نیست) سيگنال­هاي الكتريكي مغز از نظر دامنه و فركانس با برخي ديگر از سيگنال­هاي حياتي همپوشاني دارند، لذا در تعريف BCI بر مستقل بودن سيگنال­ها از ساير سيگنال­هاي عصبي و عضلاني تاكيد شده است.

2-1- تاریخچه BCI

اولین تلاش­ها در زمینه تعامل انسان با رایانه همزمان با کشف سیگنال­های EEG شروع شد و دانشمندان سعی کردند که بین این سیگنال­ها و فعالیت های مغزی ارتباط برقرار کنند[1]. اما با توجه به اینکه در ابتدا این سیگنال­ها بسیار آشفته و دارای نویز بودند، از این سیگنال­ها فقط در پزشکی استفاده می­شد و فقط پزشکان متخصص با توجه به تجربه از این سیگنال­ها می­توانستند استفاد کنند. اما رفته رفته با تولید دستگاه­های جدید و توانایی ثبت این سیگنال­ها با کیفیت بهتر، پژوهش­ها و تحقیقات بیشتری در این زمینه انجام گرفت.

در سال 1969، Elul [3]اولین تلاش را انجام داد. او بر روی سیگنال عملیات ریاضی کار کرد و نشان داد که اگر فرد عملیات فکری خاصی را انجام ندهد در %66 سیگنال مغزی آن توزیع گوسی است و اگر فرد عملیات ریاضی انجام دهد در %32 سیگنال مغزی توزیع گوسی دارد و از طریق سیگنال مغز توانست تشخیص دهد که فرد چه عملیات فکری انجام می­دهد.

در دانشگاه Colorado دو محقق Keirn و Aunon تحقیقات خود را در این زمینه برای دسته­بندی پنج فعالیت مختلف ذهنی شروع کردند[4]. آنها در حين انجام پنج فعاليت ذهني مشخص و همزمان از چند كانال، سيگنال EEG را ثبت نمودند. سپس به كمك يك تفكيك كنندة بيز[1] از توان باند­هاي مختلف فركانسي بعنوان ويژگي­هايي جهت تفكيك اين فعاليت­هاي ذهني استفاده كردند. آنها در ضمن كار خود اين ايده را مطرح نمودند كه فعاليت­هاي مختلف ذهني مي­توانند بعنوان الفبايي جهت برقراري ارتباط مستقيم مغز با دنياي خارج استفاده شود؛ بطوريكه شخص مي­تواند با تركيب و انتخاب توالي چند فعاليت مشخص مقصود خود را به دنياي خارج منتقل كند.

چند سال بعد دکتر Anderson و همکارانش [5,6] کار این دو محقق را ادامه دادند. اين گروه در اغلب كار­هاي خود از همان پنج فعاليت ذهني استفاده کردند. آنها پارامترهاي آماري همچون ضرايب(AR)[2] را تخمین زدند و با بهره گرفتن از این ضریب ویژگی­های را برای دسته بندی و تشخیص این پنج عمل استخراج کردند. بعد از استخراج ویژگی به کمک شبکه عصبی عمل دسته­بندی را انجام دادند.

Pfrutscheller و همکارانش [7-11] در مرکز Graz اتریش در تحقيقات خود از سيگنال­هاي ثبت شده در حين حركت انگشت اشاره و يا در حين تصور حركت دادن دست راست و چپ استفاده نموده­اند. آنها در كار­هاي خود از خروجي­هاي مختلفي همچون حركت يك نشانگر بر روي مانيتور، انتخاب حروف و كلمات و كنترل يك پروتز مصنوعي استفاده كرده­اند. آنها جهت استخراج ويژگي از چند روش استفاده کردند. روش اول استخراج پارامترهاي AR و روش ديگر محاسبة توان باندهاي مختلف فركانسي، كه اين باندها متناسب با شخص انتخاب مي­شوند. به گفته Pfrutscheller براي اين كار از يك تابع فاصلة وزندار جهت تعيين ميزان تأثير هر مؤلفة فركانسي بر عمل دسته بندي استفاده شده است. به اين روش (DSLVQ) [3] مي­گويند. اين عمل براي تمام فركانس­ها در فاصله HZ 30-5 انجام مي­شود تا مؤلفه­هاي فركانسي مناسب براي آن شخص بدست آيد. آنها براي دسته­بندي هم عموما از دو روش استفاده نموده­اند. روش اول روش­هاي مبتني بر شبكة عصبي (مانند LVQ)[4] و روش دوم مبتني بر تفكيك كننده­هاي خطي.[5] (LDA) آنها جهت بهبود عملكرد سيستم خود در برخي موارد از تكنيك­هاي بيو فيدبك هم استفاده نموده­اند. بعنوان مثال با نشان دادن يك فلش روي مانيتور از كاربر خواسته مي­شود كه تصور حركت دادن دست راست يا چپ را ا نجام دهد. با انجام مكرر اين كار ، تفكيك كننده را براي تفكيك اين دو عمل آموزش مي­دهند . سپس در مرحلة آزمايش هر بار كه از شخص خواسته مي­شود كه حركت دادن يك دست را تصور كند با بهره گرفتن از تفكيك كنندة تعليم ديده سیگنال مغزی او را دسته­بندي مي كنند. هر بار بسته به ميزان خطاي تفكيك كننده يك علامت فلش با طولي متناسب با ميزان خطا روي صفحه رسم مي­شود . اين علامت در واقع يك فيدبك است كه با ديدن آن شخص سعي مي­كند كه هر بار طول علامت خطا را كم كند.

Wolpaw و همکارانش[12 ] بیشتر در زمینه پزشکی کار کردند لذا كارهاي آنها عموما از پشتوانة فيزيولوژيك خوبي برخوردار است اما روش­هاي پردازشي آنها نسبتا ساده است. اساس كار آنها بر اين مبناست كه افراد را مي­توان بگونه­اي آموزش داد كه بتوانند برخي از ویژگی­های سیگنال مغزی خود را کنترل کنند.

به طور کلی از جمله تحقیقاتی که در طی سالیان دراز در زمینه BCI انجام گرفته است می توان به تصور حركت دادن دست راست و چپ ، حركت دادن انگشتان اشارة دو دست، انجام پنج فعاليت ذهني: حالت استراحت, نامه نگاري، شمارش، ضرب ذهني و دوران ذهني ، انجام عمليات ضرب با ميزان پيچيدگي مختلف، گوش دادن به انواع موسيقي، انجام فعاليتهاي احساسي و عاطفي و رانندگي شبيه سازي شده اشاره کرد که در هر زمینه محققین زیادی کار کرده­اند و به نتایج قابل قبولی دست یافته ­اند.

[1] Bayes

[2] Autoregressive

[3] Distinction Sensitive Learning Vector Quantization(DSLVQ)

[4] Learning Vector Quantization

[5] Linear Discriminant Analysis

[1] Human Computer Interface(HCI)

[2] Brain-Computer Interface(BCI)

[3] Electroencephalography

[4] Hans Berger

[5] neurons

[6] Feedback

تعداد صفحه : 105

قیمت : 14700 تومان

بلافاصله پس از پرداخت لینک دانلود فایل در اختیار شما قرار می گیرد

و در ضمن فایل خریداری شده به ایمیل شما ارسال می شود.

پشتیبانی سایت :       

*         serderehi@gmail.com

جستجو در سایت : کلمه کلیدی خود را وارد نمایید :