متن کامل پایان نامه مقطع کارشناسی ارشد رشته مهندسی عمران

با عنوان : تخمین آبشستگی در پائین دست جت ریزشی با بهره گرفتن از شبكه عصبی

در ادامه مطلب می توانید تکه هایی از ابتدای این پایان نامه را بخوانید

و در صورت نیاز به متن کامل آن می توانید از لینک پرداخت و دانلود آنی برای خرید این پایان نامه اقدام نمائید.

دانشگاه آزاد اسلامی
واحد تهران جنوب
دانشكده تحصیلات تكمیلی
“M.Sc” پایان نامه برای دریافت درجه كارشناسی ارشد
مهندسی عمران – سازه های هیدرولیكی
عنوان :
تخمین آبشستگی در پائین دست جت ریزشی با بهره گرفتن از شبكه عصبی

برای رعایت حریم خصوصی اسامی استاد راهنما،استاد مشاور و نگارنده درج نمی شود

تکه هایی از متن به عنوان نمونه :

(ممکن است هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است)

چكیده
جت های ریزشی در اثر عبور آب روی سازه های هیدرولیكی (سازه هایی چون سرریز وكالورت) بوجود می آیند. محل برخورد جت با بستر به یك كاهنده انرژی جریان تبدیل شده و حفره آبشستگی شكل می گیرد. این پدیده باعث ناپایداری كل یا قسمتی از سازه می شود. فرآیند آبشستگی در خروجی كالورت به عوامل متعددی چون جنس خاك، دبی، شعاع هیدرولیكی، ارتفاع ریزش، عمق پایاب، شیب كالورت و مهمتر از همه زمان وابسته است. از این رو سعی شد از رابطه ای استفاده شود كه اثر توأم پارامترهای فوق را نشان دهد.

هر چند تحقیقات بسیاری در خصوص نقش پارامتر زمان در فرایند تشكیل حفره آبشستگی صورت گرفته، ولی در خصوص چگونگی تأثیر آن و اینكه تا چه حد در این فرایند مؤثر است، تا كنون نتایج قابل توجهی حاصل نشده است. در این تحقیق پارامترهای موثر بر ابعاد حفره آبشستگی در دو بخش كلی بررسی شده و جهت برآورد شبكه عصبی مناسبی برای ایجاد رابطه غیر خطی كه ابعاد آبشستگی را بر اساس پارامترهای مختلف هیدرولیكی ارائه شده است. برای ایجاد رابطه مناسب و طراحی شبكه عصبی از روش FF با الگوریتم آموزش BP استفاده شده است. بخش اول ، پارامترها به صورت بعد دار و بی بعد در شبكه عصبی در محیط MATLAB مدل شده است. در حالت بی بعد روابط ارائه شده توسط شبكه عصبی با روابط مدل رگرسیونی بدست آمده، مقایسه گردید. در بخش بعدی روابط در دو حالت خاص (پارامترهای رابطه DOT و رابطه اصلاحی DOT توسط مهدوی زاده) ارئه گردید.

نتایج نشان می دهد كه رابطه مناسبی بین شبكه ترسیم شده و اطلاعات آزمایشگاهی برآورد شده وجود داشته و شبكه ارائه شده با تعداد نرونهای بالاتر در لایه پنهان در مرحله آموزش دارای دقتی در حدود 8-10 می باشد . مدلهای بی بعد دارای دقت بالاتری نسبت به مدل بعد دار هستند. همچنین مقایسه ای كه بین روابط مدل شده با شبكه عصبی و روابط مدل شده با رگرسیون غیر خطی صورت گرفت، دیده شد كه شبكه عصبی از دقت قابل ملاحظه ای نسبت به مدل های تجربی رایج برخوردار است. همچنین مقایسه ای بین پارامترهای رابطه DOT و DOT اصلاح شده توسط مهدوی زاده صورت گرفت كه به مراتب دقت در پارامترهای اصلاح شده بیشتر است. به طور كلی، بین تمام حالتهای مدل شده در شبكه عصبی، DOT اصلاحی دارای خطای كمتر و درجه همبستگی بیشتری می باشد.

در ادامه به بررسی اهمیت هر كدام از پارامترهای ورودی پرداخته شد. با حذف هر كدام از پارامترهای ورودی اثر هر كدام بر ابعاد حفره آبشستگی بررسی شده و در نهایت رابطه بدست آمده توسط شبكه عصبی ارائه گردیده است.

مقدمه

آبشستگی هرچند سابقه طولانی در علم هیدرولیك دارد ولی به علت دامنه وسیع متغیرها و گستردگی پارامتر های موثر بر آن و شرایط گوناگون كه در این پدیده وجود دارد ، تا كنون رابطه دقیقی كه بتواند تخمین مناسبی از ابعاد حفره آبشستگی بدهد در دسترس نمی باشد ومطالعه در این مورد همچنان مورد توجه محققین این علم است.

پیش بینی ابعاد حفره آبشستگی پائین دست سازه های كنترل یكی از مهمترین و مشكل ترین مراحل در طراحی فونداسیون این سازه ها است. طراحی بایستی با توجه به ابعاد حفره ایجاد شده بصورتی باشد كه احتمال شكست و واژگونی سازه حداقل گردد.

جریان خروجی از سازه های هیدرولیكی اغلب به صورت جت می باشد كه ممكن است در رودخانه ها و اطراف سازه های آنها به تغییرات زیاد پیرامون آنها منجر گردد و خسارت سازه ای و زیست محیطی قابل توجهی به همراه داشته باشد. اگر چه مطالعات متعددی در زمینه آبشستگی ناشی از جت ها انجام شده است و جتهای مختلف از قبیل جتهای افقی، عمودی و پرتابی مورد مطالعه وبررسی قرار گرفته است لیكن در هیچ كدام از موارد فوق روابط جامعی برای بررسی رفتار و خصوصیات كامل حفره آبشستگی ارائه نگردیده است و بررسی كاملتر پارامترهای موثر بر این پدیده مستلزم ادامه مطالعات است.

شبكه های عصبی مصنوعی كه امروزه در كاربردهای فراوانی ارزش والای خود را نشان داده اند، براساس مدل بیولوژیكی مغز انسان بوجود آمده اند كه ضمن اجرای فرآیند آموزش، قادرند كه قوانین و روابط درونی بین داده های تجربی را كشف كرده و در موقعیتهای دیگر تعمیم دهند و لذا در این تحقیق ، ضمن استفاده از روشهای متداول در هیدرولیك از شبكه های عصبی مصنوعی نیز برای تحلیل اطلاعات موجود استفاده شده و صحت شبكه های تدوین شده با اتكا به شاخص های آماری موجود متداول سنجیده شده است.

مطالعات انجام شده در تحقیق در قالب شش فصل آورده شده است كه به صورت اجمالی در زیر به آن اشاره شده است:

فصل اول: این فصل شامل مقدمه و هدف از تحقیق حاضر می باشد و اطلاعات كلی را در مورد پایان نامه بیان می كند.

فصل دوم: این فصل مروری بر مطالعات انجام شده می باشد كه به بررسی پارامترهای مؤثر در فرآیند تشكیل حفره آبشستگی در پائین دست جت ریزشی بر اساس تحقیقات انجام شده پرداخته شده است.

فصل سوم: در این فصل مبانی اساسی شبكه عصبی بیان شده و به نحوه مدل كردن شبكه عصبی در محیط MATLAB پرداخته شده است.

فصل چهارم: در این فصل به نحوه مطالعات آزمایشگاهی كه اطلاعات آن مورد استفاده قرار گرفته پرداخته شده و همچنین فرمولهای تجربی و تحقیقات آزمایشگاهی كه در این تحقیق استفاده شده ، ارائه گردیده است.

فصل پنجم: در این فصل به بررسی شبكه عصبی مصنوعی و كابرد آن در پیش بینی حفره آبشستگی ناشی از جت های ریزشی و تجزیه و تحلیل نتایج ناشی از آن پرداخته شده و همچنین روابط بدست آمده از شبكه عصبی ارئه گردیده است.

فصل ششم: در این فصل به اختصار نتایج نهایی حاصل از انجام این تحقیق مطالعه انجام شده بیان شده و پیشنهاداتی در این زمینه در جهت ادامه كار ارائه شده است.

تعداد صفحه : 159

قیمت : 14700 تومان

 

—-

پشتیبانی سایت :       

*         serderehi@gmail.com


1 دیدگاه

دیدگاهتان را بنویسید